Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Metal thermopile infrared detector with vertical graphene

Li Kai Sun Jie Du Zai-Fa Qian Feng-Song Tang Peng-Hao Mei Yu Xu Chen Yan Qun Liu Ming Li Long-Fei Guo Wei-Ling

Citation:

Metal thermopile infrared detector with vertical graphene

Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Thermopile infrared detector is a kind of detector device mainly composed of thermocouple as the basic unit. Because of its simple principle, no need of cooling equipment, and other advantages, it has been widely used in various fields of production and life. However, the absorption rates of the materials in conventional thermopile devices are poor, and the majority of them are incompatible with microfabrication methods. In this work, a metal thermopile infrared detector with vertical graphene (VG) is designed and fabricated. The VG is grown via plasma enhanced chemical vapor deposition, and retained at the device’s thermal ends to provide the thermopile IR detector’s wideband and high response characteristics. The detector achieves a room temperature responsivity reaching a value as high as 1.53 V/W at 792 nm, which can increase the response results about 28 times and reduce the response time to 0.8 ms compared with the thermopile detector without VG. After systematically measuring the response results, it is finally found that there are three main mechanisms responsible for the response on the composite device. The first one is the response generated by the metal thermopile itself alone. The second one is the response increased eventually by the contribution of VG covered at the metal thermal junction that expands the temperature difference. The last one is the response generated by the temperature gradient existing inside the VG on the surface of the device after the absorption of heat. The portion of each partial response mechanism in the total response is also analyzed, providing a new reference direction for analyzing the response generation mechanism of thermopile detectors with other absorbing materials. The process is compatible with the microfabrication, while the device performance is enhanced and suitable for mass production. Furthermore, by utilizing the surface plasmon resonance to combine VG with metal nanoparticles, the material’s light absorption is found to be enhanced significantly under the same conditions, and the resulting thermal voltage can be increased to 6 times. The results indicate that VG promises to possess practical applications, in many fields such as photoelectric sensing and power production devices. This technology provides a new method to manufacture high-performance thermopile infrared detectors and other sensor devices.
      Corresponding author: Sun Jie, jie.sun@fzu.edu.cn ; Guo Wei-Ling, guoweiling@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0209000), the Fujian Provincial Science and Technology Department Project, China (Grant Nos. 2021HZ0114, 2021J01583, 2021L3004), and the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ122).
    [1]

    Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839Google Scholar

    [2]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113Google Scholar

    [3]

    Compton O C, Nguyen S B T 2010 Small 6 711Google Scholar

    [4]

    Katsnelson M I 2007 Mater. Today 10 20

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [6]

    Liu C, Chang Y, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Shi S F, Xu X, Ralph D C, McEuen P L 2011 Nano Lett. 11 1814Google Scholar

    [8]

    Emani N K, Chung T F, Ni X, Kildishev A V, Chen Y P, Boltasseva A 2012 Nano Lett. 12 5202Google Scholar

    [9]

    Lee H, Heo K, Park J, Park Y, Noh S, Kim K S, Lee C, Hong B H, Jian J, Hong S 2012 J. Mater. Chem. 22 8372Google Scholar

    [10]

    Babichev A V, Zhang H, Lavenus P, Julien F H, Egorov A Y, Lin Y T, Tu L W, Tchernycheva M 2013 Appl. Phys. Lett. 103 201103Google Scholar

    [11]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer P G F, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363Google Scholar

    [12]

    Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K 2013 Nanoscale 5 5180Google Scholar

    [13]

    Bo Z, Mao S, Han Z J, Cen K, Chen J, Ostrikov K K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [14]

    Zhu W, Xue Z Y, Wang G, Zhao M H, Chen D, Guo Q L, Liu Z D, Feng X Q, Ding G Q, Chu P K, Di Z F 2020 ACS Appl. Nano Mater. 3 6915Google Scholar

    [15]

    Yu K, Wang P, Lu G, Chen K H, Bo Z, Chen J 2011 J. Phys. Chem. Lett. 2 537Google Scholar

    [16]

    Graf A, Arndt M, Sauer M, Gerlach G 2007 Meas. Sci. Technol. 18 R59Google Scholar

    [17]

    Chaglla E J S, Celik N, Balachandran W 2018 Sensors 18 3315Google Scholar

    [18]

    Moisello E, Malcovati P, Bonizzoni E 2021 Micromachines 12 148Google Scholar

    [19]

    Buchner R, Sosna C, Maiwald M, Benecke W, Lang W 2006 Sens. Actuators, A 130 262

    [20]

    Dijkstra M, Lammerink T S, de Boer M J, Berenschot E J W, Wiegerink R J, Elwenspoek M 2014 J. Microelectromech. Syst. 23 908Google Scholar

    [21]

    Randjelovic D, Petropoulos A, Kaltsas G, Stojanovic M, Lazic Z, Djuric Z, Matic M 2008 Sens. Actuators, A 141 404Google Scholar

    [22]

    Yoo K P, Hong H P, Lee M J, Min S J, Park C W, Choi W S, Min N K 2011 Meas. Sci. Technol. 22 115206Google Scholar

    [23]

    Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S 2005 J. Micromech. Microeng. 15 S233Google Scholar

    [24]

    Dhawan R, Madusanka P, Hu G Y, Debord J, Tran T, Maggio K, Edwards H, Lee M 2020 Nat. Commun. 11 4362Google Scholar

    [25]

    Xu D H, Wang Y L, Xiong B, Li T 2017 Front. Mech. Eng. 12 557Google Scholar

    [26]

    Shahmarvandi E K, Ghaderi M, Wolffenbuttel R F 2016 J. Phys. Conf. Ser. 757 012033Google Scholar

    [27]

    Xu D, Xiong B, Wang Y 2010 IEEE Electron Device Lett. 31 512Google Scholar

    [28]

    Zhang C C, Mao H Y, Shi M, Xiong J J, Long K W, Chen D P 2020 33rd IEEE International Confence on Micro Electro Mechannical Systems (MEMS 2020) Vancouver, Canada, January 18–22, 2020 p949

    [29]

    Qian F, Deng J, Xiong F, Dong Y, Xu C 2020 Opt. Mater. Express 10 2909Google Scholar

    [30]

    Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X, Wang K, Zhu Y, Fang Y 2016 Small 12 549Google Scholar

    [31]

    Tian W, Wang Y, Zhou H, Wang Y L, Li T 2020 J. Microelectromech Syst. 29 36Google Scholar

    [32]

    Sofiane B M, Sébastien E, Thomas B, Laurent T, Pascal V, Danick B, Jean-Paul G, Laurent C 2015 Microsyst. Technol. 21 1627Google Scholar

    [33]

    Allen L H, Patrick K H, Nathaniel M G, Sungjae H, Yong C S, Yi S, Matthew C, Madan D, Anantha P C, Jing K, Pablo J, Tomás P 2015 Nano Lett. 15 7211Google Scholar

    [34]

    Willets K A, Van Duyne, R P 2007 Ann. Rev. Phys. Chem. 58 267Google Scholar

  • 图 1  PECVD系统反应腔室结构示意图

    Figure 1.  Schematic diagram of the structure of the reaction chamber of the PECVD system.

    图 2  (a)—(e) VG热电堆探测器制备流程; (f) VG热电堆探测器及器件测试示意图

    Figure 2.  (a)–(e) Preparation process of VG thermopile detector; (f) schematic diagram of the VG thermopile detector and device measuring.

    图 3  带有VG金属热电堆红外探测器实物图

    Figure 3.  Physical image of infrared detector with VG metal thermopile.

    图 4  VG的(a) SEM图和(b)拉曼光谱图; 不同生长时间的VG对应的(c)光透射率和(d)反射率

    Figure 4.  (a) SEM image and (b) Raman spectrum of VG; (c), (d) corresponding optical transmittance (c) and reflectance (d) of VG with different growth time.

    图 5  器件在(a), (b) 792和(c), (d) 1550 nm下的响应结果 (a), (c) 仅有金属的热电堆器件; (b), (d) 带有VG的金属热电堆器件

    Figure 5.  Response results of the device at (a), (b) 792 and (c), (d) 1550 nm: (a), (c) Metal-only thermopile device; (b), (d) metal thermopile device combined with VG.

    图 6  VG热电堆探测器在792 nm下的测试结果 (a) 响应测试示意图; (b) 仅有金属的器件光照在左端; (c) 仅有金属的器件光照在右端; (d) 带有VG的器件光照在左端; (e) 带有VG的器件光照在中点; (f) 带有VG的器件光照在右端

    Figure 6.  Measure results of VG thermopile detector at 792 nm: (a) Measure schematic diagram; (b) metal-only device (laser on the left end); (c) metal-only device (laser on the right end); (d) with VG device (laser on the left end); (e) with VG device (laser on the midpoint); (f) with VG device (laser on the right end).

    图 10  VG与金属纳米颗粒结合前后的响应结果 (a) VG与AgNPs; (b) VG与AuNPs

    Figure 10.  Response results before and after the combination of VG and metal nanoparticles: (a) VG with AgNPs; (b) VG with AuNPs

    图 7  VG热电堆探测器在1550 nm下的测试结果 (a) 带有VG的器件光照在左端; (b) 带有VG的器件光照在中点; (c) 带有VG的器件光照在右端

    Figure 7.  Measure results of VG thermopile detector at 1550 nm: (a) With VG device (laser on the left end); (b) with VG device (laser on the midpoint); (c) with VG device (laser on the right end).

    图 8  厚度为8 nm Au薄膜和Ag薄膜退火后的SEM图和粒径统计直方图 (a) Au退火700 ℃; (b) Au退火 900 ℃; (c) Ag退火 300 ℃; (d) Ag退火 700 ℃; (e)—(h) 相对应的粒径统计直方图结果

    Figure 8.  SEM images and particle size statistical histograms of 8 nm thick Au films and Ag films after annealing: (a) Au annealed at 700 ℃; (b) Au annealed at 900 ℃; (c) Ag annealed at 300 ℃; (d) Ag annealed at 700 ℃; (e)–(h) corresponding particle size statistical histogram results.

    图 9  VG与金属纳米颗粒结合前后的(a), (b)拉曼测试和(c), (d)光吸收率结果 (a), (c) VG与AgNPs; (b), (d) VG与AuNPs

    Figure 9.  (a), (b) Raman and (c), (d) optical absorption results before and after the combination of VG and metal nanoparticles: (a), (c) VG with AgNPs; (b), (d) VG with AuNPs.

    表 1  不同种热电堆红外探测器的参数比较

    Table 1.  Parameter comparison of different thermopile infrared detectors.

    吸收层热电堆材料响应度
    R/(V·W–1)
    响应时间
    τ/ms
    Au[31]P/n-polySi16.514
    Ti[32]n-polySi/Ti210
    SiN-SiO2[33]p/n-graphene923
    VGCu/Cu-Ni1.530.8
    DownLoad: CSV
    Baidu
  • [1]

    Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839Google Scholar

    [2]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113Google Scholar

    [3]

    Compton O C, Nguyen S B T 2010 Small 6 711Google Scholar

    [4]

    Katsnelson M I 2007 Mater. Today 10 20

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [6]

    Liu C, Chang Y, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Shi S F, Xu X, Ralph D C, McEuen P L 2011 Nano Lett. 11 1814Google Scholar

    [8]

    Emani N K, Chung T F, Ni X, Kildishev A V, Chen Y P, Boltasseva A 2012 Nano Lett. 12 5202Google Scholar

    [9]

    Lee H, Heo K, Park J, Park Y, Noh S, Kim K S, Lee C, Hong B H, Jian J, Hong S 2012 J. Mater. Chem. 22 8372Google Scholar

    [10]

    Babichev A V, Zhang H, Lavenus P, Julien F H, Egorov A Y, Lin Y T, Tu L W, Tchernycheva M 2013 Appl. Phys. Lett. 103 201103Google Scholar

    [11]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer P G F, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363Google Scholar

    [12]

    Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K 2013 Nanoscale 5 5180Google Scholar

    [13]

    Bo Z, Mao S, Han Z J, Cen K, Chen J, Ostrikov K K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [14]

    Zhu W, Xue Z Y, Wang G, Zhao M H, Chen D, Guo Q L, Liu Z D, Feng X Q, Ding G Q, Chu P K, Di Z F 2020 ACS Appl. Nano Mater. 3 6915Google Scholar

    [15]

    Yu K, Wang P, Lu G, Chen K H, Bo Z, Chen J 2011 J. Phys. Chem. Lett. 2 537Google Scholar

    [16]

    Graf A, Arndt M, Sauer M, Gerlach G 2007 Meas. Sci. Technol. 18 R59Google Scholar

    [17]

    Chaglla E J S, Celik N, Balachandran W 2018 Sensors 18 3315Google Scholar

    [18]

    Moisello E, Malcovati P, Bonizzoni E 2021 Micromachines 12 148Google Scholar

    [19]

    Buchner R, Sosna C, Maiwald M, Benecke W, Lang W 2006 Sens. Actuators, A 130 262

    [20]

    Dijkstra M, Lammerink T S, de Boer M J, Berenschot E J W, Wiegerink R J, Elwenspoek M 2014 J. Microelectromech. Syst. 23 908Google Scholar

    [21]

    Randjelovic D, Petropoulos A, Kaltsas G, Stojanovic M, Lazic Z, Djuric Z, Matic M 2008 Sens. Actuators, A 141 404Google Scholar

    [22]

    Yoo K P, Hong H P, Lee M J, Min S J, Park C W, Choi W S, Min N K 2011 Meas. Sci. Technol. 22 115206Google Scholar

    [23]

    Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S 2005 J. Micromech. Microeng. 15 S233Google Scholar

    [24]

    Dhawan R, Madusanka P, Hu G Y, Debord J, Tran T, Maggio K, Edwards H, Lee M 2020 Nat. Commun. 11 4362Google Scholar

    [25]

    Xu D H, Wang Y L, Xiong B, Li T 2017 Front. Mech. Eng. 12 557Google Scholar

    [26]

    Shahmarvandi E K, Ghaderi M, Wolffenbuttel R F 2016 J. Phys. Conf. Ser. 757 012033Google Scholar

    [27]

    Xu D, Xiong B, Wang Y 2010 IEEE Electron Device Lett. 31 512Google Scholar

    [28]

    Zhang C C, Mao H Y, Shi M, Xiong J J, Long K W, Chen D P 2020 33rd IEEE International Confence on Micro Electro Mechannical Systems (MEMS 2020) Vancouver, Canada, January 18–22, 2020 p949

    [29]

    Qian F, Deng J, Xiong F, Dong Y, Xu C 2020 Opt. Mater. Express 10 2909Google Scholar

    [30]

    Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X, Wang K, Zhu Y, Fang Y 2016 Small 12 549Google Scholar

    [31]

    Tian W, Wang Y, Zhou H, Wang Y L, Li T 2020 J. Microelectromech Syst. 29 36Google Scholar

    [32]

    Sofiane B M, Sébastien E, Thomas B, Laurent T, Pascal V, Danick B, Jean-Paul G, Laurent C 2015 Microsyst. Technol. 21 1627Google Scholar

    [33]

    Allen L H, Patrick K H, Nathaniel M G, Sungjae H, Yong C S, Yi S, Matthew C, Madan D, Anantha P C, Jing K, Pablo J, Tomás P 2015 Nano Lett. 15 7211Google Scholar

    [34]

    Willets K A, Van Duyne, R P 2007 Ann. Rev. Phys. Chem. 58 267Google Scholar

  • [1] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [2] Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Physica Sinica, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] Ge Hao-Nan, Xie Run-Zhang, Guo Jia-Xiang, Li Qing, Yu Yi-Ye, He Jia-Le, Wang Fang, Wang Peng, Hu Wei-Da. Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors. Acta Physica Sinica, 2022, 71(11): 110703. doi: 10.7498/aps.71.20220380
    [4] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [7] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei. Enhanced photonic spin Hall effect due to controllable permittivity of alloy film. Acta Physica Sinica, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [10] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [11] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [13] Huang Yun-Huan, Li Pu. Extinction properties of gold nanorod complexes. Acta Physica Sinica, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [14] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [16] Chen Wen-Hao, Du Lei, Yin Xue-Song, Kang Li, Wang Fang, Chen Song. Investigation on the low-freauency noise physical models and the defects' characterization of the PbS infrared dectector. Acta Physica Sinica, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [17] Huang Jian-Liang, Wei Yang, Ma Wen-Quan, Yang Tao, Chen Liang-Hui. On detection wavelength and electron-hole wave function overlap of type Ⅱ InAs/InxGa1-xSb superlattice infrared photodetector. Acta Physica Sinica, 2010, 59(5): 3099-3106. doi: 10.7498/aps.59.3099
    [18] Wang Ke, Zheng Wan-Hua, Ren Gang, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors. Acta Physica Sinica, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [19] Li Liang-Xin, Hu Yong-Hua. Intersubband and intraband transitions of self-assembled quantum wires for the infrared detectors. Acta Physica Sinica, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [20] CHEN CHANG-HONG, YI XIN-JIAN, XIONG BI-FENG. INFRARED RESPONSIVITY OF UNCOOLED VO2-BASED THIN FILMS BOLOMETER. Acta Physica Sinica, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
Metrics
  • Abstract views:  5217
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2022
  • Accepted Date:  27 October 2022
  • Available Online:  19 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回
Baidu
map