Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Second harmonic scattering multipole analysis of ligand-decorated gold nanoparticles

Zhang Yu-Jia Lu Min-Jian Li Yan Wei Hao-Yun

Citation:

Second harmonic scattering multipole analysis of ligand-decorated gold nanoparticles

Zhang Yu-Jia, Lu Min-Jian, Li Yan, Wei Hao-Yun
PDF
HTML
Get Citation
  • Ligand decoration of noble metallic nanoparticles is often needed for some applications, such as biochemical sensing, catalysis and nanotechnology, and the understanding of its process is of great importance. The second harmonic scattering (SHS) technique with advantages of surface-sensitivity and label-free detection, provides intrinsic information for such a research. In this work, the second harmonic(SH) scattering patterns of two types of ligands (cetyltrimethylammonium chloride and L-cysteine) capped gold nanoparticles (GNPs) with the same radii are measured. Both the intensities and shapes of the SH scattering patterns are changed after the ligand exchange process. In order to explain the pattern changes, the analytic expressions of SH scattering are derived theoretically for a relatively large nanoparticle based on Dadap’s multipolar theory. Considering the derived relationship between the multipole (up to octopole) contributions and the power of the nanosphere radius, the effective size effect is introduced to express the SH scattering signal change for different ligand decorations and well explain the experimental results. This theory provides a new perspective of the SH scattering response to different capping ligands and offers a possible quantitative method to analyze interface physical chemistry for ligands on the surface of nanoparticles.
      Corresponding author: Wei Hao-Yun, luckiwei@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775114)
    [1]

    Zhou J, Ralston J, Sedev R, Beattie D A 2009 J. Colloid Interface Sci. 331 251Google Scholar

    [2]

    Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 955Google Scholar

    [3]

    Dinkel R, Peukert W, Braunschweig B 2017 J. Phys. Condens. Matter 29 133002Google Scholar

    [4]

    Dinkel R, Jakobi J, Ziefuss A R, Barcikowski S, Braunschweig B, Peukert W 2018 J. Phys. Chem. C 122 27383Google Scholar

    [5]

    Butet J, Brevet P F, Martin O J F 2015 Acs Nano 9 10545Google Scholar

    [6]

    邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805Google Scholar

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805Google Scholar

    [7]

    王凯, 杨光, 龙华, 李玉华, 戴能利, 陆培祥 2008 57 3862Google Scholar

    Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P X 2008 Acta Phys. Sin. 57 3862Google Scholar

    [8]

    Kuchler M, Rebentrost F 1993 Phys. Rev. Lett. 71 2662Google Scholar

    [9]

    Rebentrost F 1995 Prog. Surf. Sci. 48 71Google Scholar

    [10]

    Nikoobakht B, El-Sayed M A 2001 Langmuir 17 6368Google Scholar

    [11]

    Sawaguchi T, Sato Y, Mizutani F 2001 Phys. Chem. Chem. Phys. 3 3399Google Scholar

    [12]

    Zhang P, Sham T K 2002 Appl. Phys. Lett. 81 736Google Scholar

    [13]

    Gan W, Xu B, Dai H L 2011 Angew. Chem. Int. Ed. 50 6622Google Scholar

    [14]

    El Harfouch Y, Benichou E, Bertorelle F, Russier-Antoine I, Jonin C, Lascoux N, Brevet P F 2012 J. Phys. Condens. Matter 24 124104Google Scholar

    [15]

    Ngo H M, Ledoux-Rak I 2014 Proc. SPIE 9171 91710Y

    [16]

    Park J W, Shumaker-Parry J S 2015 ACS Nano 9 1665Google Scholar

    [17]

    Van Steerteghem N, Van Cleuvenbergen S, Deckers S, Kumara C, Dass A, Hakkinen H, Clays K, Verbiest T, Knoppe S 2016 Nanoscale 8 12123Google Scholar

    [18]

    Sipe J E, So V C Y, Fukui M, Stegeman G I 1980 Phys. Rev. B 21 4389Google Scholar

    [19]

    Dadap J I, Shan J, Eisenthal K B, Heinz T F 1999 Phys. Rev. Lett. 83 4045Google Scholar

    [20]

    Russier-Antoine I, Huang J, Benichou E, Bachelier G, Jonin C, Brevet P F 2008 Chem. Phys. Lett. 450 345Google Scholar

    [21]

    Haber L H, Kwok S J J, Semeraro M, Eisenthal K B 2011 Chem. Phys. Lett. 507 11Google Scholar

    [22]

    Karam T E, Haber L H 2014 J. Phys. Chem. C 118 642Google Scholar

    [23]

    Das A, Chakrabarti A, Das P K 2017 Nanoarmoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes pp33–58

    [24]

    Troiano J M, Kuech T R, Vartanian A M, Torelli M D, Sen A, Jacob L M, Hamers R J, Murphy C J, Pedersen J A, Geiger F M 2016 J. Phys. Chem. C 120 20659Google Scholar

    [25]

    Buck M, Eisert F, Fischer J, Grunze M, Trager F 1991 Appl. Phys. A 53 552Google Scholar

    [26]

    Dinkel R, Braunschweig B, Peukert W 2016 Phys. Chem. C 120 1673Google Scholar

    [27]

    Butet J, Maurice A, Bergmann E, Bachelier G, Russier-Antoine I, Ray C, Bonhomme O, Jonin C, Benichou E, Brevet P F 2019 Metal Nanostruct. Photonics 105

    [28]

    Ray P C 2010 Chem. Rev. 110 5332Google Scholar

    [29]

    Das K, Uppal A, Saini R K, Varshney G K, Mondal P, Gupta P K 2014 Spectrochim. Acta, Part A 128 398Google Scholar

    [30]

    Galletto P, Brevet P F, Girault H H, Antoine R, Broyer M 1999 J. Phys. Chem. B 103 8706

    [31]

    Nappa J, Revillod G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2005 Phys. Rev. B 71 165407Google Scholar

    [32]

    Nappa J, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2006 J. Chem. Phys. 125 184712Google Scholar

    [33]

    Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E, Brevet P F 2010 Phys. Rev Lett. 105 077401Google Scholar

    [34]

    Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar

    [35]

    Zheng Y, Zhong X, Li Z, Xia Y J P 2014 Part. Part. Syst. Char. 31 266Google Scholar

    [36]

    Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A 2011 J. Catal. 278 181Google Scholar

    [37]

    Dadap J I, Shan J, Heinz T F 2004 J. Opt. Soc. Am. B 21 1328Google Scholar

  • 图 1  (a) 60 nm直径大小的CTAC修饰的金纳米颗粒的TEM图像; (b) 两组混合液的UV-Vis吸收光谱, 左右箭头分别代表SH散射光波长和激发光波长

    Figure 1.  (a) TEM image of 60 nm CTAC-capped gold nanoparticles (GNPs); (b) UV-Vis absorbance spectra of the CTAC-capped GNP and L-cysteine/CTAC-capped GNP colloidal solutions. The left and right arrows indicate the SH wavelength and the excitation light wavelength, respectively.

    图 2  (a) 激发光光谱; (b) 垂直偏振入射下的CTAC修饰的金纳米颗粒的p-偏振SH散射光光谱

    Figure 2.  (a) The spectrum of excitation light; (b) the p-polarized spectrum of SH scattering light from the CTAC-capped GNP under vertically-polarized incidence.

    图 3  60 nm金颗粒在不同修饰配体下的随入射光偏振角度变化的(a) p偏振和(b) s偏振的SH散射图样, 其中实心圆和三角为实验点, 实线为拟合实验点. 两个权重因子${\zeta ^{\rm{V}}}$${\zeta ^{\rm{H}}}$在配体交换过程前后的变化也在图中展示出来

    Figure 3.  (a) The p-polarized and (b) s-polarized SH scattering patterns of 60-nm GNPs with different surface ligand coverage as a function of the incoming fundamental beam polarization angle: experimental points (filled circles and triangles) and fit to the experimental points (solid line). The changes of ${\zeta ^{\rm{V}}}$ and ${\zeta ^{\rm{H}}}$ for the ligand-exchange process are also shown.

    图 4  球体的SH散射模型原理图

    Figure 4.  Schematic of SH scattering model for a sphere.

    表 1  沿x轴方向偏振的激发场下的$ b_{ijk}^{lm} $表达式

    Table 1.  Coefficients $ b_{ijk}^{lm} $ for an excitation field polarized along x direction.

    $ (l, m) $$ b_{ \bot \bot \bot }^{lm}/E_0^2 $$ b_{ \bot \parallel \parallel }^{lm}/E_0^2 $$b_{\parallel \bot \parallel , {{E} } }^{lm}/E_0^2$$b_{\parallel \bot \parallel , {{M} } }^{lm}/E_0^2$
    $ (1, 0) $$\dfrac{4}{5}\sqrt {\dfrac{\text{π} }{3} } {\rm{i}}L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_ \bot ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\begin{gathered} \dfrac{2}{5}\sqrt {\dfrac{\text{π} }{3} } {\rm{i} }L_\parallel ^{ { {\rm{E} } } 1}(\omega ) \\ \times[5 L_\parallel ^{ { {\rm{M} } } 1}(\omega ) + 3 L_\parallel ^{ { {\rm{E} } } 2}(\omega )]{K_1}a \end{gathered}$$\begin{gathered} \dfrac{1}{5}\sqrt {\dfrac{ {2\text{π} } }{3} } [ - 5 L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{M} } } 1}(\omega ) \\ + 3 L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{E} } } 2}(\omega ) \\ -2 L_ \bot ^{ { {\rm{E} } } 2}(\omega )L_\parallel ^{ { {\rm{E} } } 1}(\omega )]{K_1}a \\ \end{gathered}$0
    $ (2, 0) $$- \dfrac{2}{3}\sqrt {\dfrac{\text{π} }{5} } {[L_ \bot ^{ {{\rm{E}}} 1}(\omega )]^2}$$\dfrac{2}{3}\sqrt {\dfrac{\text{π} }{5} } {[L_\parallel ^{ { {\rm{E} } } 1}(\omega )]^2}$$2\sqrt {\dfrac{ {2\text{π} } }{ {15} } } {\rm{i}}[L_ \bot ^{ {E} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 1}(\omega )]$0
    $ (2, \pm 2) $$\sqrt {\dfrac{ {2\text{π} } }{ {15} } } {[L_ \bot ^{ {{\rm{E}}} 1}(\omega )]^2}$$- \sqrt {\dfrac{ {2\text{π} } }{ {15} } } {[L_\parallel ^{ {{\rm{E}}} 1}(\omega )]^2}$$- 2\sqrt {\dfrac{\text{π} }{5} } {\rm{i}}[L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 1}(\omega )]$0
    $ (3, 0) $$\dfrac{4}{ {35} }\sqrt {7\text{π} } {\rm{i}}L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_ \bot ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\dfrac{4}{ {35} }\sqrt {7\text{π} } {\rm{i}}L_\parallel ^{ {{\rm{E}}} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\begin{gathered} - \dfrac{ {8\sqrt {21\text{π} } } }{ {105} }\left( {L_\parallel ^{ { {\rm{E} } } 1}(\omega )L_ \bot ^{ { {\rm{E} } } 2}(\omega )} \right. \\ \left. { + L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{E} } } 2}(\omega )} \right){K_1}a \\ \end{gathered}$0
    $ (3, \pm 2) $$2\sqrt {\dfrac{ {2\text{π} } }{ {105} } } {\rm{i}}L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_ \bot ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$- 2\sqrt {\dfrac{ {2\text{π} } }{ {105} } } {\rm{i}}L_\parallel ^{ {{\rm{E}}} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\begin{gathered} \dfrac{4}{3}\sqrt {\dfrac{ {2\text{π} } }{ {35} } } \left( {L_\parallel ^{ { {\rm{E} } } 1}(\omega )L_ \bot ^{ { {\rm{E} } } 2}(\omega )} \right. \\ \left. { + L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{E} } } 2}(\omega )} \right){K_1}a \\ \end{gathered}$0
    DownLoad: CSV

    表 2  不同的激发-辐射模式以及SH多极子与$ {K_1}a $因子的幂次关系

    Table 2.  The Excitation-radiation channels and the power relationship to the factor $ ({K_1}a) $ with the electric field.

    基场多极子 SH场多极子与$ ({K_1}a) $的幂
    次关系
    SH场偏
    振方向
    ${{\rm{E}}} 1$${{\rm{E}}} 1$ ${{\rm{E}}} 1$$ \propto {({K_1}a)^2} $s/p
    ${{\rm{E}}} 1$${\rm{E}}2$ ${{\rm{E}}} 1$$ \propto {({K_1}a)^3} $p
    ${{\rm{E}}} 1$${\rm{M}}1$ ${{\rm{E}}} 1$$ \propto {({K_1}a)^3} $p
    ${{\rm{E}}} 1$${{\rm{E}}} 1$ ${\rm{E}}2$$ \propto {({K_1}a)^3} $s
    ${{\rm{E}}} 1$${\rm{E}}2$ ${{\rm{E}}} 3$$ \propto {({K_1}a)^5} $p
    DownLoad: CSV
    Baidu
  • [1]

    Zhou J, Ralston J, Sedev R, Beattie D A 2009 J. Colloid Interface Sci. 331 251Google Scholar

    [2]

    Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 955Google Scholar

    [3]

    Dinkel R, Peukert W, Braunschweig B 2017 J. Phys. Condens. Matter 29 133002Google Scholar

    [4]

    Dinkel R, Jakobi J, Ziefuss A R, Barcikowski S, Braunschweig B, Peukert W 2018 J. Phys. Chem. C 122 27383Google Scholar

    [5]

    Butet J, Brevet P F, Martin O J F 2015 Acs Nano 9 10545Google Scholar

    [6]

    邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805Google Scholar

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805Google Scholar

    [7]

    王凯, 杨光, 龙华, 李玉华, 戴能利, 陆培祥 2008 57 3862Google Scholar

    Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P X 2008 Acta Phys. Sin. 57 3862Google Scholar

    [8]

    Kuchler M, Rebentrost F 1993 Phys. Rev. Lett. 71 2662Google Scholar

    [9]

    Rebentrost F 1995 Prog. Surf. Sci. 48 71Google Scholar

    [10]

    Nikoobakht B, El-Sayed M A 2001 Langmuir 17 6368Google Scholar

    [11]

    Sawaguchi T, Sato Y, Mizutani F 2001 Phys. Chem. Chem. Phys. 3 3399Google Scholar

    [12]

    Zhang P, Sham T K 2002 Appl. Phys. Lett. 81 736Google Scholar

    [13]

    Gan W, Xu B, Dai H L 2011 Angew. Chem. Int. Ed. 50 6622Google Scholar

    [14]

    El Harfouch Y, Benichou E, Bertorelle F, Russier-Antoine I, Jonin C, Lascoux N, Brevet P F 2012 J. Phys. Condens. Matter 24 124104Google Scholar

    [15]

    Ngo H M, Ledoux-Rak I 2014 Proc. SPIE 9171 91710Y

    [16]

    Park J W, Shumaker-Parry J S 2015 ACS Nano 9 1665Google Scholar

    [17]

    Van Steerteghem N, Van Cleuvenbergen S, Deckers S, Kumara C, Dass A, Hakkinen H, Clays K, Verbiest T, Knoppe S 2016 Nanoscale 8 12123Google Scholar

    [18]

    Sipe J E, So V C Y, Fukui M, Stegeman G I 1980 Phys. Rev. B 21 4389Google Scholar

    [19]

    Dadap J I, Shan J, Eisenthal K B, Heinz T F 1999 Phys. Rev. Lett. 83 4045Google Scholar

    [20]

    Russier-Antoine I, Huang J, Benichou E, Bachelier G, Jonin C, Brevet P F 2008 Chem. Phys. Lett. 450 345Google Scholar

    [21]

    Haber L H, Kwok S J J, Semeraro M, Eisenthal K B 2011 Chem. Phys. Lett. 507 11Google Scholar

    [22]

    Karam T E, Haber L H 2014 J. Phys. Chem. C 118 642Google Scholar

    [23]

    Das A, Chakrabarti A, Das P K 2017 Nanoarmoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes pp33–58

    [24]

    Troiano J M, Kuech T R, Vartanian A M, Torelli M D, Sen A, Jacob L M, Hamers R J, Murphy C J, Pedersen J A, Geiger F M 2016 J. Phys. Chem. C 120 20659Google Scholar

    [25]

    Buck M, Eisert F, Fischer J, Grunze M, Trager F 1991 Appl. Phys. A 53 552Google Scholar

    [26]

    Dinkel R, Braunschweig B, Peukert W 2016 Phys. Chem. C 120 1673Google Scholar

    [27]

    Butet J, Maurice A, Bergmann E, Bachelier G, Russier-Antoine I, Ray C, Bonhomme O, Jonin C, Benichou E, Brevet P F 2019 Metal Nanostruct. Photonics 105

    [28]

    Ray P C 2010 Chem. Rev. 110 5332Google Scholar

    [29]

    Das K, Uppal A, Saini R K, Varshney G K, Mondal P, Gupta P K 2014 Spectrochim. Acta, Part A 128 398Google Scholar

    [30]

    Galletto P, Brevet P F, Girault H H, Antoine R, Broyer M 1999 J. Phys. Chem. B 103 8706

    [31]

    Nappa J, Revillod G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2005 Phys. Rev. B 71 165407Google Scholar

    [32]

    Nappa J, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2006 J. Chem. Phys. 125 184712Google Scholar

    [33]

    Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E, Brevet P F 2010 Phys. Rev Lett. 105 077401Google Scholar

    [34]

    Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar

    [35]

    Zheng Y, Zhong X, Li Z, Xia Y J P 2014 Part. Part. Syst. Char. 31 266Google Scholar

    [36]

    Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A 2011 J. Catal. 278 181Google Scholar

    [37]

    Dadap J I, Shan J, Heinz T F 2004 J. Opt. Soc. Am. B 21 1328Google Scholar

  • [1] Ren Li-Qing, Yang Qiang, Ji Chao-Ran, Chi Jiao, Hu Yun, Wei Ying-Chun, Xu Jin-You. Spatial orientation of CdS nanowires based on second harmonic generation spectroscopy and microscopic imaging. Acta Physica Sinica, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] Zhang Meng-Lai, Qin Zhao-Fu, Chen Zhuo. Conditions for surface lattice resonances and enhancement of second harmonic generation based on split-ring resonators. Acta Physica Sinica, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [5] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [7] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [8] Shen Yu-Tian,  Meng Sheng. Water photosplitting: Atomistic mechanism and quantum dynamics. Acta Physica Sinica, 2019, 68(1): 018202. doi: 10.7498/aps.68.20181312
    [9] Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao. Secondary electron emission characteristics of gold nanostructures. Acta Physica Sinica, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [10] Su Dan, Dou Xiu-Ming, Ding Kun, Wang Hai-Yan, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles. Acta Physica Sinica, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [11] Ye Tong, Gao Yun, Yin Yan. Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes. Acta Physica Sinica, 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [12] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [13] Wang Kai, Yang Guang, Long Hua, Li Yu-Hua, Dai Neng-Li, Lu Pei-Xiang. Fabrication and optical properties of Au nanoparticle array. Acta Physica Sinica, 2008, 57(6): 3862-3867. doi: 10.7498/aps.57.3862
    [14] Li Jun, Zhang Kai-Wang, Meng Li-Jun, Liu Wen-Liang, Zhong Jian-Xin. Formation and structure transition of gold nanoparticles on surface of carbon nanotube. Acta Physica Sinica, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [15] Li Zhi, Zhang Jia-Sen, Yang Jing, Gong Qi-Huang. Realization of femtosecond-resolved near-field optical system and its application. Acta Physica Sinica, 2007, 56(6): 3630-3635. doi: 10.7498/aps.56.3630
    [16] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] Zeng Hui-Dan, Qu Shi-Liang, Jiang Xiong-Wei, Qiu Jian-Rong, Zhu Cong-Shan, Gan F u-Xi. A study on the photo-induced crystallization properties in Au+-doped silicate glasses. Acta Physica Sinica, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [18] LI LIE-MING, SUN XIN, FENG WEI-GUO. THEORY OF SECOND HARMONIC GENERATION AT METAL SURFACE. Acta Physica Sinica, 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [19] LI LE, YU GONG-DA, DONG SHU-YAN, WANG GONG-MING, ZHANG ZHI-MING. STUDIES ON THE ADSORPTION OF PYRIDINE MOLECULES ON SILVER SURFACES BY SHG METHOD. Acta Physica Sinica, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [20] CHEN ZHENG-HAO, CUI DA-FU, Lü HUI-BIN, ZHOU YUE-LIANG. THE GENERATION AND THE CHARACTERISTICS OF INFRARED SURFACE SECOND HARMONIC AT THE GaAs-Al INTERFACE. Acta Physica Sinica, 1984, 33(3): 428-433. doi: 10.7498/aps.33.428
Metrics
  • Abstract views:  4293
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2022
  • Accepted Date:  09 May 2022
  • Available Online:  27 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回
Baidu
map