-
To enhance the radiation performance of the Beidou antenna in the near-space hypersonic vehicle, the static strong magnetic field is used to weaken the electron density in plasma surrounding the antenna. In order to demonstrate the effect of this program, a time-domain multi-physical method is proposed. In the proposed method, what is first analyzed is the reduction of electron concentration in plasma sheath by static strong magnetic field with the spectral element time domain (SETD) method, which has spectral accuracy. Then, the electron density after mitigation is extracted to replace the original electron concentration around the antenna. Hence, the distribution of the manipulated plasma sheath can be obtained. Finally, the radiation characteristics of BeiDou antenna installed in the vehicle are analyzed by the conformal finite difference time domain (CFDTD) method. The simulation results exhibit radiation patterns under different conditions. With the plasma sheath, the radiated electromagnetic waves are greatly attenuated, which will significantly affect the transmission of communication signals. Importantly, the radiation patterns are effectively improved with the external static magnetic field, confirming that it provides an effective tool to mitigate the influence of plasma sheath on the radiation performance of antenna in hypersonic vehicle.
-
Keywords:
- plasma sheath /
- static magnetic field /
- transient multi-physical simulation /
- electromagnetic radiation
[1] Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879
[2] Bai B, Li X P, Xu J, Liu Y M 2015 IEEE Trans. Plasma Sci. 43 2588
Google Scholar
[3] Xu J, Bai B, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 1056
Google Scholar
[4] 杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 63 085201
Google Scholar
Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201
Google Scholar
[5] 王仁寿 1995 遥测遥控 5 10
Wang R S 1995 J. Telemetry, Tracking Command 5 10
[6] 王家胜, 杨显强, 经姚翔, 游晟 2014 航天器工程 23 6
Google Scholar
Wang J S, Yang X Q, Jing Y X, You S 2014 Spacecr. Eng. 23 6
Google Scholar
[7] 张凤友 1986 宇航材料工艺 5 47
Zhang F Y 1986 Aerosp. Mater. Technol. 5 47
[8] 陈伟, 郭立新, 李江挺, 淡荔 2017 66 084102
Google Scholar
Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102
Google Scholar
[9] Chen K, Xu D G, Li J N, Zhong K, Yao J Q 2021 Results Phys. 24 104109
Google Scholar
[10] Podolsky V, Semnani A, Macheret S O, 2020 IEEE Trans. Plasma Sci. 48 3524
Google Scholar
[11] Liu J F, Ma H Y, Jiao Z H, Bai G H, Xi X 2020 IEEE Trans. Plasma Sci. 48 2706
Google Scholar
[12] Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100
Google Scholar
[13] Sun Y F, Dang F C, Yuan C W, He J T, Zhang Q, Zhao X H 2020 IEEE Trans. Antennas Propag. 68 7580
Google Scholar
[14] Kim M, Boyd I D 2010 J. Spacecr. Rockets 47 29
Google Scholar
[15] 邹秀 2006 55 1907
Google Scholar
Zou X 2006 Acta Phys. Sin. 55 1907
Google Scholar
[16] Cao Y, Fatemi V, Fang S A, Watanabe K J, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[17] Qian C, Ding D Z, Fan Z H, Chen R S 2015 Phys. Plasmas 22 032111
Google Scholar
[18] Yan S, Greenwood A D, Jin J M 2018 IEEE Trans. Antennas Propag. 66 1882
Google Scholar
[19] 刘东林 2015 博士学位论文 (西安: 西安电子科技大学)
Liu D L 2015 Ph. D. Dissertation (Xi’an: Xidian Univeristy) (in Chinese)
[20] Liu Q H, Cheng C, Massoud H Z 2004 IEEE T COMPUT AID D 23 1200
Google Scholar
[21] Bao H G, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 2244
Google Scholar
[22] 丁大志, 成爱强, 王林, 张天成, 陈如山 2020 电波科学学报“计算电磁学”专刊邀稿 35 93
Ding D Z, Cheng A Q, Wang L, Zhang T C, Chen R S 2020 Chin. J. Radio Sci. 35 93
[23] Wang L, Ding D Z, Chen R S, Cui W Z, Wang R 2020 IEEE Trans. Antennas Propag. 68 4894
Google Scholar
[24] Zhang T C, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 083504
Google Scholar
[25] Wang L, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 093512
Google Scholar
[26] 葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第二版) (西安: 西电电子科技大学出版社) 第14页
Gei D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Vol. 2) (Xi’an: Xidian University Press) p14 (in Chinese)
[27] Sarkar D, Srivastava K V 2018 IEEE Trans. Antennas Propag. 66 3798
Google Scholar
[28] Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490
Google Scholar
[29] Cox S M, Matthews P C 2002 J. Comput. Phys. 176 430
Google Scholar
[30] 张兵, 韩景龙 2011 航空学报 32 400
Zhang B, Han J L 2011 Acta Aeronaut. et Astronaut. Sin. 32 400
[31] Wu S Q, Liu S B, Guo Z 2010 2010 International Conference on Microwave and Millimeter Wave Technology Chengdu, China, May 8–11, 2020 p8
-
-
[1] Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879
[2] Bai B, Li X P, Xu J, Liu Y M 2015 IEEE Trans. Plasma Sci. 43 2588
Google Scholar
[3] Xu J, Bai B, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 1056
Google Scholar
[4] 杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 63 085201
Google Scholar
Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201
Google Scholar
[5] 王仁寿 1995 遥测遥控 5 10
Wang R S 1995 J. Telemetry, Tracking Command 5 10
[6] 王家胜, 杨显强, 经姚翔, 游晟 2014 航天器工程 23 6
Google Scholar
Wang J S, Yang X Q, Jing Y X, You S 2014 Spacecr. Eng. 23 6
Google Scholar
[7] 张凤友 1986 宇航材料工艺 5 47
Zhang F Y 1986 Aerosp. Mater. Technol. 5 47
[8] 陈伟, 郭立新, 李江挺, 淡荔 2017 66 084102
Google Scholar
Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102
Google Scholar
[9] Chen K, Xu D G, Li J N, Zhong K, Yao J Q 2021 Results Phys. 24 104109
Google Scholar
[10] Podolsky V, Semnani A, Macheret S O, 2020 IEEE Trans. Plasma Sci. 48 3524
Google Scholar
[11] Liu J F, Ma H Y, Jiao Z H, Bai G H, Xi X 2020 IEEE Trans. Plasma Sci. 48 2706
Google Scholar
[12] Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100
Google Scholar
[13] Sun Y F, Dang F C, Yuan C W, He J T, Zhang Q, Zhao X H 2020 IEEE Trans. Antennas Propag. 68 7580
Google Scholar
[14] Kim M, Boyd I D 2010 J. Spacecr. Rockets 47 29
Google Scholar
[15] 邹秀 2006 55 1907
Google Scholar
Zou X 2006 Acta Phys. Sin. 55 1907
Google Scholar
[16] Cao Y, Fatemi V, Fang S A, Watanabe K J, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[17] Qian C, Ding D Z, Fan Z H, Chen R S 2015 Phys. Plasmas 22 032111
Google Scholar
[18] Yan S, Greenwood A D, Jin J M 2018 IEEE Trans. Antennas Propag. 66 1882
Google Scholar
[19] 刘东林 2015 博士学位论文 (西安: 西安电子科技大学)
Liu D L 2015 Ph. D. Dissertation (Xi’an: Xidian Univeristy) (in Chinese)
[20] Liu Q H, Cheng C, Massoud H Z 2004 IEEE T COMPUT AID D 23 1200
Google Scholar
[21] Bao H G, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 2244
Google Scholar
[22] 丁大志, 成爱强, 王林, 张天成, 陈如山 2020 电波科学学报“计算电磁学”专刊邀稿 35 93
Ding D Z, Cheng A Q, Wang L, Zhang T C, Chen R S 2020 Chin. J. Radio Sci. 35 93
[23] Wang L, Ding D Z, Chen R S, Cui W Z, Wang R 2020 IEEE Trans. Antennas Propag. 68 4894
Google Scholar
[24] Zhang T C, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 083504
Google Scholar
[25] Wang L, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 093512
Google Scholar
[26] 葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第二版) (西安: 西电电子科技大学出版社) 第14页
Gei D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Vol. 2) (Xi’an: Xidian University Press) p14 (in Chinese)
[27] Sarkar D, Srivastava K V 2018 IEEE Trans. Antennas Propag. 66 3798
Google Scholar
[28] Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490
Google Scholar
[29] Cox S M, Matthews P C 2002 J. Comput. Phys. 176 430
Google Scholar
[30] 张兵, 韩景龙 2011 航空学报 32 400
Zhang B, Han J L 2011 Acta Aeronaut. et Astronaut. Sin. 32 400
[31] Wu S Q, Liu S B, Guo Z 2010 2010 International Conference on Microwave and Millimeter Wave Technology Chengdu, China, May 8–11, 2020 p8
Catalog
Metrics
- Abstract views: 4548
- PDF Downloads: 73
- Cited By: 0