搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和非线性介质中艾里-高斯光束的传输与交互作用

陈卫军 卢克清 惠娟利 张宝菊

引用本文:
Citation:

饱和非线性介质中艾里-高斯光束的传输与交互作用

陈卫军, 卢克清, 惠娟利, 张宝菊

Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium

Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju
PDF
导出引用
  • 研究了艾里-高斯光束在饱和非线性介质中的传输与交互作用.结果表明,入射光为单艾里-高斯光束时,在一定功率范围内,调节初始振幅与光场分布,可形成传输方向可控的呼吸孤子.当初始振幅增加时,孤子的呼吸周期先减小后增大.入射光为两艾里-高斯光束时,同相位光束相互吸引,两光束中心位置两侧附近产生呼吸孤子和对称孤子对.反相位光束相互排斥,中心位置两侧仅产生对称的孤子对.光场分布越趋于高斯分布,两艾里-高斯光束相互作用就越强,孤子对的数目越少.
    The propagation and interactions of Airy-Gaussian beams in a saturable nonlinear medium are investigated numerically based on the split-step Fourier transform method. We show that the propagation of a single Airy-Gaussian beam in the saturable nonlinear medium can generate breathing solitons under steady state conditions. The generation and propagation of these breathing solitons can be affected by the initial amplitude and the field distribution factor of the single Airy-Gaussian beam. In a certain power range, these breathing solitons propagate along the acceleration direction with a controllable tilted angle. In the domain existing in these breathing solitons and for a given value of the field distribution factor of the single Airy-Gaussian beam, when the initial amplitude of the single Airy-Gaussian beam increases gradually, the periodicity of these breathing solitons becomes from small to larger and the tilted angle of these breathing solitons increases monotonically. When the value of the initial amplitude of the single Airy-Gaussian beam is given, the bigger the value of the field distribution factor of the single Airy-Gaussian beam, the smaller the tilted angle of these breathing solitons. Furthermore, the stability of these breathing solitons has been investigated by using the beam propagation method, and it has been found that they are stable. We find that the propagations of two Airy-Gaussian beams in the saturable nonlinear medium can generate not only soliton pairs but also interactions between two Airy-Gaussian beams. When the two Airy-Gaussian beams interact with each other, it is found that the in-phase Airy-Gaussian beams attract each other and exhibit a single breathing soliton with strong intensity in the beam center and some symmetric soliton pairs with weak intensity near both sides of the beam center. The smaller the interval between the two incident Airy-Gaussian optical components, the stronger the attraction between two Airy-Gaussian beams, and the less the numbers of the soliton pairs. The energies of both the main lobes of two Airy-Gaussian beams and the single breathing soliton increase with the value of the field distribution factor of two Airy-Gaussian beams. On the other hand, the out-of-phase Airy-Gaussian beams repel each other and exhibit only symmetric soliton pairs on both sides of the beam center. Our analysis indicates that the repellant of two out-of-phase Airy-Gaussian beams becomes big when the interval between two incident Airy-Gaussian optical components decreases and the number of the soliton pairs becomes less when the field distributions of two beams are close to the Gaussian distribution.
      通信作者: 卢克清, kqlutj@126.com
    • 基金项目: 天津市自然科学基金(批准号:13JCYBJC16400)资助的课题.
      Corresponding author: Lu Ke-Qing, kqlutj@126.com
    • Funds: Project supported by the Natural Science Foundation of Tianjin City, China (Grant No. 13JCYBJC16400).
    [1]

    Kovalev A A, Kotlyar V V, Porfirev A A 2015 Phys. Rev. A 91 053840

    [2]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [3]

    Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Chen W, Lu K, Hui J, Feng T, Liu S, Niu P, Yu L 2013 Opt. Express 21 15595

    [5]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [6]

    Kaminer I, Segev M, Christodoulides D N 2011 Phys. Rev. Lett. 106 213903

    [7]

    Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 86 013842

    [8]

    Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814

    [9]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [10]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [11]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [12]

    Yue Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205 (in Chinese)[岳阳阳, 肖寒, 王子潇, 吴敏2013 62 044205]

    [13]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719

    [14]

    Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585

    [15]

    Hu Y, Zhang P, Lou C, Huang S, Xu J, Chen Z G 2010 Opt. Lett. 35 2260

    [16]

    Chu X, Zhou G, Chen R 2012 Phys. Rev. A 85 013815

    [17]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [18]

    Cheng H, Zang W, Zhou W, Tian J 2010 Opt. Express 18 20384

    [19]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [20]

    Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys. Sin. 61 174207 (in Chinese)[任志君, 吴琼, 周卫东, 吴根柱, 施逸乐2012 61 174207]

    [21]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [22]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [23]

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209 (in Chinese)[张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚2013 62 034209]

    [24]

    Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258

    [25]

    Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648

    [26]

    Clerici M, Hu Y, Lassonde P, Millián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [27]

    Chen R, Yin C, Chu X, Wang H 2010 Phys. Rev. A 82 043832

    [28]

    Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504

    [29]

    Deng D 2011 Eur. Phys. J. D 65 553

    [30]

    Zhang X 2016 Opt. Commun. 367 364

    [31]

    Zhou M, Chen C, Chen B, Peng X, Peng Y, Deng D 2015 Chin. Phys. B 24 124102

    [32]

    Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016 Chin. Phys. B 25 084102

    [33]

    Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P 1999 Phys. Rev. E 60 2377

  • [1]

    Kovalev A A, Kotlyar V V, Porfirev A A 2015 Phys. Rev. A 91 053840

    [2]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [3]

    Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Chen W, Lu K, Hui J, Feng T, Liu S, Niu P, Yu L 2013 Opt. Express 21 15595

    [5]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [6]

    Kaminer I, Segev M, Christodoulides D N 2011 Phys. Rev. Lett. 106 213903

    [7]

    Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 86 013842

    [8]

    Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814

    [9]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [10]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [11]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [12]

    Yue Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205 (in Chinese)[岳阳阳, 肖寒, 王子潇, 吴敏2013 62 044205]

    [13]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719

    [14]

    Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585

    [15]

    Hu Y, Zhang P, Lou C, Huang S, Xu J, Chen Z G 2010 Opt. Lett. 35 2260

    [16]

    Chu X, Zhou G, Chen R 2012 Phys. Rev. A 85 013815

    [17]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [18]

    Cheng H, Zang W, Zhou W, Tian J 2010 Opt. Express 18 20384

    [19]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [20]

    Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys. Sin. 61 174207 (in Chinese)[任志君, 吴琼, 周卫东, 吴根柱, 施逸乐2012 61 174207]

    [21]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [22]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [23]

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209 (in Chinese)[张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚2013 62 034209]

    [24]

    Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258

    [25]

    Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648

    [26]

    Clerici M, Hu Y, Lassonde P, Millián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [27]

    Chen R, Yin C, Chu X, Wang H 2010 Phys. Rev. A 82 043832

    [28]

    Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504

    [29]

    Deng D 2011 Eur. Phys. J. D 65 553

    [30]

    Zhang X 2016 Opt. Commun. 367 364

    [31]

    Zhou M, Chen C, Chen B, Peng X, Peng Y, Deng D 2015 Chin. Phys. B 24 124102

    [32]

    Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016 Chin. Phys. B 25 084102

    [33]

    Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P 1999 Phys. Rev. E 60 2377

  • [1] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [2] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展.  , 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [5] 陈卫军, 宋德, 李野, 王新, 秦旭磊, 刘春阳. 竞争型非线性介质中艾里-高斯光束交互作用的调控.  , 2019, 68(9): 094206. doi: 10.7498/aps.68.20190042
    [6] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控.  , 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [7] 邓俊鸿, 李贵新. 非线性光学超构表面.  , 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [8] 樊丁, 黄自成, 黄健康, 王新鑫, 黄勇. 考虑金属蒸汽的钨极惰性气体保护焊电弧与熔池交互作用三维数值分析.  , 2015, 64(10): 108102. doi: 10.7498/aps.64.108102
    [9] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究.  , 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [10] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究.  , 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [11] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性.  , 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [12] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析.  , 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [13] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性.  , 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [14] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究.  , 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [15] 龚华平, 吕志伟, 林殿阳, 刘松江. 非聚焦条件下CS2介质中受激布里渊散射光限幅特性的研究.  , 2007, 56(9): 5263-5268. doi: 10.7498/aps.56.5263
    [16] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究.  , 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [17] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究.  , 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [18] 郝中华, 刘劲松. 无偏压的串联光折变晶体回路中高斯光束传播特性调节.  , 2002, 51(12): 2772-2777. doi: 10.7498/aps.51.2772
    [19] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究.  , 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [20] 马瑾怡, 邱锡钧. 强光场中电子系统与多光子的相互作用.  , 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
计量
  • 文章访问数:  7259
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map