-
The magnetic materials with a chiral crystallographic lattice have hold neither inversion center nor mirror plane, leading to the emergence of Dzyaloshinskii-Moriya interaction and exotic physical phenomena like skyrmion, multiferroicity, and chiral solition lattice. The trigonal oxide MnSb2O6 is recognized as a novel chiral-lattice helimagnet with unusual multiferroic properties, where magnetic field enables the selecting of a single ferroelectric domain and a slight tilting of field direction can trigger the reversal of electric polarization. Single crystal of MnSb2O6 is prepared by the flux method. The magnetic susceptibility at 2 K shows a linear field dependent behavior except in the low field region. The magnetization shows a deviation from linearity at around 0.2 T for H⊥c, while a step-like anomaly is observed at about 1 T for H//c, suggesting the domain selection and spin-flop transition, respectively. The electron spin resonance parameters, such as the resonance field, the g-factor and the linewidth ΔH, are obtained by performing single Lorentzian line. Interestingly, the resonance field shows a distinct, anisotropic temperature dependent behavior when further cooling, the resonance field shifts towards the lower field direction for H⊥c, while it shifts towards higher field direction for H//c. Excluding several mechanisms for this FM-like temperature dependent behavior of the resonance field, combining the ground state of spiral phase and its unique multiferroic properties, we suggest that the spiral magnetic structure of the ground state of MnSb2O6 forms a conical magnetic structure under external magnetic field. Based on this, we can speculate the variation of ferroelectric polarization intensity with moderate and higher magnetic field. Moreover, the critical fitting of the ESR linewidth gives an unusual small critical index, p = 0.49 for H⊥c and p = 0.54 for H//c, implying that the magnetism possesses a two-dimensional characteristic and competitive interaction.
-
Keywords:
- chiral crystallographic lattice /
- uultiferroic /
- ESR /
- conical spiral phase.
[1] Mühlbauer B, Binz F, Jonietz C, Pfleiderer A, Rosch A, Neubauer R, Georgii, Böni P 2009 Science 323 915
Google Scholar
[2] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
Google Scholar
[3] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pederson B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
Google Scholar
[4] Du H F, Liang D, Jin C M, Kong L Y, Matthew J S, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637
Google Scholar
[5] 张蕾 2018 67 137501
Google Scholar
Zhang L 2018 Acta Phys. Sin. 67 137501
Google Scholar
[6] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 69 117501
Google Scholar
Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501
Google Scholar
[7] Liu Y H, Li Y Quan 2015 Chin. Phys. B 24 017506
Google Scholar
[8] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
Google Scholar
[9] Kimura T 2007 Annu. Rev. Mater. Res. 37 387
Google Scholar
[10] Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501
Google Scholar
[11] 胡婷, 阚二军 2018 67 157701
Google Scholar
Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701
Google Scholar
[12] 谭丛兵, 钟向丽, 王金斌 2020 69 127702
Google Scholar
Tan C B, Zhong X L, Wang J B 2020 Acta Phys. Sin. 69 127702
Google Scholar
[13] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507
Google Scholar
Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507
Google Scholar
[14] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovhinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204
Google Scholar
[15] Wang L, Chepiga N, Ki D K, Li F, Zhu W, Kato Y, Ovhinnikova O S, Mila F, Martin I, Mandrus D, Morpurge A F 2017 Phys. Rev. Lett. 118 257203
Google Scholar
[16] Li Q Y, Zhao D, Li ZD 2021 Chin. Phys. B 30 017504
Google Scholar
[17] Srinivasan G, Rasmussen E T, Gallegos J, Srinivasan R, Bokhan Y I, Laletin V M 2001 Phys. Rev. B 64 214408
Google Scholar
[18] Srinivasan G, Rasmussen E T, Levin B J, Hayes R 2002 Phys. Rev. B 65 134402
Google Scholar
[19] Reimers J N, Greedan J E, Subramanian M A 1989 J. Solid State Chem. 79 26
Google Scholar
[20] Johnson R D, Cao K, Chapon L C, Fabrizi F, Perks N, Manuel P, Yang J J, Oh Y S, Cheong S W, Radaelli P G 2013 Phys. Rev. Lett. 111 017202
Google Scholar
[21] Werner J, Koo C, Klingeler R, Vasiliev A N, Ovchenkov Y A, Polovkova A S, Raganyan G V, Zvereva E A 2016 Phys. Rev. B 94 104408
Google Scholar
[22] Kinoshita M, Seki S, Sato T J, Nambu Y, Hong T, Matsuda M, Cao H B, Ishiwata S, Tokura Y 2016 Phys. Rev. Lett. 117 047201
Google Scholar
[23] Abragam A, Bleaney B 1970 Electron Paramagentic Resonance of Transition Ions (Oxfod: Clarendon Press)
[24] Turov E A (translated by Tybulewicz A, Chomet S) 1965 Physical Properties of Magnetically Ordered Crystals (New York: Academic Press)
[25] Zimmermann S, Steckel F, Hess C, Ji H W, Hor Y S, Cava R J, Buchner B 2016 Phys. Rev. B 94 125205
Google Scholar
[26] Chapman B J, Bornstein A C, Ghimire N J, Mandrus D, Lee M 2014 Appl. Phys. Lett. 105 072405
Google Scholar
[27] Kittel C 1948 Phys. Rev. 73 155
Google Scholar
[28] Nagata K, Tazuke Y, Tsushima K 1972 J. Phys. Soc. Jpn. 32 6
Google Scholar
[29] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T, Tokura Y 2006 Phys. Rev. Lett. 96 207204
Google Scholar
[30] Honda T, White J S, Harris A B, Chapon L C, Fennell A, Roessli B, Zaharko O, Murakami Y, Kenzelmann M, Kimura T 2017 Nat. Commun. 8 15457
Google Scholar
[31] Mertens F G, Bishop A R, Wysin G M, Kawabata C 1989 Phys. Rev. B 39 591
Google Scholar
[32] Zorko A, Arcon D, Lappas A, Giapintzakis J 2001 Phys. Rev. B 65 024417
Google Scholar
[33] Akimitsu J, Ishikawa Y 1977 J. Phys. Soc. Jpn. 42 462
Google Scholar
-
图 2 MnSb2O6单晶的磁性数据 (a) 0.01 T磁场垂直和平行于c轴的磁化率及其倒数的温度依赖关系, 虚线代表高温段的居里外斯拟合; (b) 2 K下磁场垂直和平行于c轴的等温磁化强度M(H), 插图表示低场部分的放大图像
Figure 2. The magnetism data of MnSb2O6 single crystal: (a) The temperature dependence of magnetic susceptibility χ and it's reciprocal under a magnetic field of μ0H = 0.01 T for H⊥c and H∥c, respectively. The dashed lines represent a Curie-Weiss fitting to the high-temperature regime. (b) Static magnetization M(H) as a function of applied magnetic field H of MnSb2O6 for H⊥c and H∥c axis at 2 K. The inset shows the enlarged low-magnetic field regime.
-
[1] Mühlbauer B, Binz F, Jonietz C, Pfleiderer A, Rosch A, Neubauer R, Georgii, Böni P 2009 Science 323 915
Google Scholar
[2] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
Google Scholar
[3] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pederson B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
Google Scholar
[4] Du H F, Liang D, Jin C M, Kong L Y, Matthew J S, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637
Google Scholar
[5] 张蕾 2018 67 137501
Google Scholar
Zhang L 2018 Acta Phys. Sin. 67 137501
Google Scholar
[6] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 69 117501
Google Scholar
Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501
Google Scholar
[7] Liu Y H, Li Y Quan 2015 Chin. Phys. B 24 017506
Google Scholar
[8] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
Google Scholar
[9] Kimura T 2007 Annu. Rev. Mater. Res. 37 387
Google Scholar
[10] Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501
Google Scholar
[11] 胡婷, 阚二军 2018 67 157701
Google Scholar
Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701
Google Scholar
[12] 谭丛兵, 钟向丽, 王金斌 2020 69 127702
Google Scholar
Tan C B, Zhong X L, Wang J B 2020 Acta Phys. Sin. 69 127702
Google Scholar
[13] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507
Google Scholar
Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507
Google Scholar
[14] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovhinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204
Google Scholar
[15] Wang L, Chepiga N, Ki D K, Li F, Zhu W, Kato Y, Ovhinnikova O S, Mila F, Martin I, Mandrus D, Morpurge A F 2017 Phys. Rev. Lett. 118 257203
Google Scholar
[16] Li Q Y, Zhao D, Li ZD 2021 Chin. Phys. B 30 017504
Google Scholar
[17] Srinivasan G, Rasmussen E T, Gallegos J, Srinivasan R, Bokhan Y I, Laletin V M 2001 Phys. Rev. B 64 214408
Google Scholar
[18] Srinivasan G, Rasmussen E T, Levin B J, Hayes R 2002 Phys. Rev. B 65 134402
Google Scholar
[19] Reimers J N, Greedan J E, Subramanian M A 1989 J. Solid State Chem. 79 26
Google Scholar
[20] Johnson R D, Cao K, Chapon L C, Fabrizi F, Perks N, Manuel P, Yang J J, Oh Y S, Cheong S W, Radaelli P G 2013 Phys. Rev. Lett. 111 017202
Google Scholar
[21] Werner J, Koo C, Klingeler R, Vasiliev A N, Ovchenkov Y A, Polovkova A S, Raganyan G V, Zvereva E A 2016 Phys. Rev. B 94 104408
Google Scholar
[22] Kinoshita M, Seki S, Sato T J, Nambu Y, Hong T, Matsuda M, Cao H B, Ishiwata S, Tokura Y 2016 Phys. Rev. Lett. 117 047201
Google Scholar
[23] Abragam A, Bleaney B 1970 Electron Paramagentic Resonance of Transition Ions (Oxfod: Clarendon Press)
[24] Turov E A (translated by Tybulewicz A, Chomet S) 1965 Physical Properties of Magnetically Ordered Crystals (New York: Academic Press)
[25] Zimmermann S, Steckel F, Hess C, Ji H W, Hor Y S, Cava R J, Buchner B 2016 Phys. Rev. B 94 125205
Google Scholar
[26] Chapman B J, Bornstein A C, Ghimire N J, Mandrus D, Lee M 2014 Appl. Phys. Lett. 105 072405
Google Scholar
[27] Kittel C 1948 Phys. Rev. 73 155
Google Scholar
[28] Nagata K, Tazuke Y, Tsushima K 1972 J. Phys. Soc. Jpn. 32 6
Google Scholar
[29] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T, Tokura Y 2006 Phys. Rev. Lett. 96 207204
Google Scholar
[30] Honda T, White J S, Harris A B, Chapon L C, Fennell A, Roessli B, Zaharko O, Murakami Y, Kenzelmann M, Kimura T 2017 Nat. Commun. 8 15457
Google Scholar
[31] Mertens F G, Bishop A R, Wysin G M, Kawabata C 1989 Phys. Rev. B 39 591
Google Scholar
[32] Zorko A, Arcon D, Lappas A, Giapintzakis J 2001 Phys. Rev. B 65 024417
Google Scholar
[33] Akimitsu J, Ishikawa Y 1977 J. Phys. Soc. Jpn. 42 462
Google Scholar
Catalog
Metrics
- Abstract views: 5868
- PDF Downloads: 97
- Cited By: 0