Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The photon blockade effect of a complete Buck-Sukumar model

Liu Xue-Ying Cheng Shu-Jie Gao Xian-Long

Citation:

The photon blockade effect of a complete Buck-Sukumar model

Liu Xue-Ying, Cheng Shu-Jie, Gao Xian-Long
PDF
HTML
Get Citation
  • The Buck-Sukumar (BS) model, with a nonlinear coupling between the atom and the light field, is well defined only when its coupling strength is lower than a critical coupling. Its energy collapses at a critical coupling and is unbounded beyond that value. In other words, the BS model is incomplete. We introduce a simple and complete BS model by adding a nonlinear photon term into the initial BS model. Considering the rotating wave approximation, this complete BS model conserves the excited number and the parity. By expanding it in the subspace of the product state between the atom and the field, we solve the time-independent Schrödinger equation to obtain the eigenenergy and eigenstate. Furthermore, we explore the influence of the nonlinear photon term on the energy spectrum and the photon blockade effect for the complete BS model by calculating the excited number and second-order correlation function.Our study shows that, the nonlinear photon term not only eliminates the energy spectral collapse but also makes it well-defined and complete in all the coupling regime. When at the resonance between the atomic and the field frequency, the nonlinear photon term breaks the harmonicity of the energy spectrum and produces a ladder of the excited number in the ground state. Because the larger nonlinear photon term inhibits the photon transition from an energy level to the higher one, it produces the single-photon projection state in the larger coupling region. Accordingly, we find that the nonlinear photon term promotes photon blockade by calculating the second-order correlation function. When at the non-resonant region, the nonlinear photon term enlarges the originally anharmonic energy ladder. For a complete BS model with the fixed nonlinear photon coupling strength and the fixed detuning, the energy level for the positive detuning is lower than that with the negative detuning, and more energy is required to overcome the absorption of a photon. Therefore, the positive detuning promotes the photon blockade. For the negative detuning, the system is more likely to absorb a photon and jump to a higher energy level, and therefore, suppresses the photon blockade.
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174346, 11835011).
    [1]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [2]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132Google Scholar

    [3]

    Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M, Haroche S 1996 Phys. Rev. Lett. 76 1800Google Scholar

    [4]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [5]

    Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vučković J 2007 Nat. Lett. 450 857Google Scholar

    [6]

    Frisk-Kokum A, Miranowicz A, De Liberato S, Savasta S, Nori F 2019 Nat. Rev. Phys. 1 19Google Scholar

    [7]

    Rossatto D Z, Villas-Bǒas C J, Sanz M, Solano E 2017 Phys. Rev. A 96 013849Google Scholar

    [8]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [9]

    Chen Q, Wang C, He S, Wang K 2012 Phys. Rev. A 86 023822Google Scholar

    [10]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [11]

    Ng K M, Lo C F, Liu K L 2000 Phys. A: Stat. Mech. Appl. 275 463Google Scholar

    [12]

    Rodríguez-Lara B M, Soto-Eguibar F, Cárdenas A Z, Moya-Cessa H M 2013 Opt. Express 21 12888Google Scholar

    [13]

    Rodríguez-Lara B M 2014 J. Opt. Soc. Am. B 31 1719Google Scholar

    [14]

    Penna V, Raffa F A 2014 Int. J. Quantum Inf. 12 1560010Google Scholar

    [15]

    Cordeiro F, Providência C, da Providência J, Nishiyama S 2007 J. Phys. A: Math. Theor. 40 12153Google Scholar

    [16]

    Liu X Y, Ren X Z, Wang C, Gao X L, Wang K L 2020 Commun. Theor. Phys. 72 065502Google Scholar

    [17]

    Felicetti S, Rossatto D Z, Rico E, Solano E, Forn-Díaz P 2018 Phys. Rev. A. 97 013851Google Scholar

    [18]

    Duan L, Xie Y F, Braak D, Chen Q H 2016 J. Phys. A: Math. Theor. 49 464002Google Scholar

    [19]

    Lo C F 2020 Sci. Rep. 10 18761Google Scholar

    [20]

    Cui S, Grémaud B, Guo W, Batrouni G G 2020 Phys. Rev. A 102 033334Google Scholar

    [21]

    Moya-Cessa H, Soto-Eguibar F, Vargas-Martínez J M, Juárez- Amaro R, Zúñiga-Segundo A 2012 Phys. Rep. 513 229Google Scholar

    [22]

    Valverde C, Gonçalves V G, Baseia B 2016 Phys. A: Stat. Mech. Appl. 446 171Google Scholar

    [23]

    Pritchard J D 2012 Ph. D. Dissertation (Durham: Durham University)

    [24]

    Grünwald P 2019 New J. Phys. 21 093003Google Scholar

    [25]

    Li M C, Chen A X 2019 Atom. Appl. Sci. 9 980Google Scholar

    [26]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [27]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoǧlu A 2005 Science 290 2282Google Scholar

    [28]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [29]

    Koch J, Hur K L 2009 Phys. Rev. A. 80 023811Google Scholar

  • 图 1  共振时 $\varDelta=0$, 非线性光子耦合项对旋波近似下的 BS 模型能谱的影响, 其中 (a) $ U=0 $, (b) $ U=0.1 $, 红色代表偶宇称态, 蓝色代表奇宇称态, 实线代表$ E_{n}^{\left(+\right)} $支, 虚线代表$ E_{n}^{\left(-\right)} $

    Figure 1.  Influence of the nonlinear photon term on the BS model with the rotating wave approximation at resonance $\varDelta=0$, where (a) $ U=0 $, (b) $ U=0.1 $, the red (blue) line represents the energy level with even (odd) parity while the solid (dashed) line represents the energy level of $ E_{n}^{\left(+\right)} $ ($ E_{n}^{\left(-\right)} $).

    图 2  共振时$ \varDelta=0 $, 非线性光子项对旋波近似下BS模型激发数$ \langle\hat{N}_{{\rm{e}}}\rangle $的影响

    Figure 2.  For the BS model with the rotating wave approximation at resonance $ \varDelta=0 $, the influence of the nonlinear photon term on the excited number $ \langle\hat{N}_{{\rm{e}}}\rangle $

    图 3  共振时$ \varDelta=0 $, 非线性光子项对旋波近似下的BS模型能级差$ \text{δ} E_{m}, \; m=d, \; 0, \; 1, \; \cdots $的影响 (a) $ U=0 $; (b) $ U \ne 0 $, 图中红色线表示 $ U=1 $, 黑色线表示$ U=0.5 $

    Figure 3.  For the BS model with the rotating wave approximation at resonance $ \varDelta=0 $, the influence of the nonlinear photon term on the nearest neighbor energy level difference $\text{δ} E_{m}, \; m=d, \; 0,\; 1, \; \cdots $, where (a) $ U=0 $, (b)$ U \ne 0 $ and the red (black) line represents $ U=1(0.5) $ in panel (b)

    图 4  共振时$ \varDelta=0 $, 非线性光子项对旋波近似下 BS 模型的基态二阶关联函数$ G_{2}\left(0\right) $的影响 (a) $ G_{2}\left(0\right) $随非线性光子 U和耦合强度$ g_{{\rm{r}}} $的变化, 颜色代表对$ G_{2}\left(0\right) $取对数后$ \log\left(G_{2}\left(0\right)\right) $的值; (b) 不同非线性光子耦合强度U$ G_{2}\left(0\right) $随耦合强度$ g_{{\rm{r}}} $的变化

    Figure 4.  For the BS model with the rotating wave approximation at resonance $ \varDelta=0 $, the influence of the nonlinear photon term on the second-order correlation function $ G_{2}\left(0\right) $: (a) Variation of $ G_{2}\left(0\right) $ as a function of the nonlinear photon term U and the coupling strength $ g_{{\rm{r}}} $, where the color represents the value of $ \log\left(G_{2}\left(0\right)\right) $; (b) variation of $ G_{2}\left(0\right) $ as a function of the coupling strength $ g_{{\rm{r}}} $ for different nonlinear photon terms U

    图 5  非线性光子项为$ U=0.1 $ 时, 失谐量$ \varDelta \ne 0 $对旋波近似下BS模型的(a) 基态激发数 $ \hat{N}_{{\rm{e}}} $, (b) 能级差$\text{δ} E_{m}, $$ \; m=d, \;0,\; 1$, (c) 基态二阶关联函数$ G_{2}\left(0\right) $的影响. 图(b)中红色线代表$ \varDelta=-2 $, 黑色线代表$ \varDelta=0 $, 蓝色线代表$ \varDelta=2 $

    Figure 5.  For the BS model with the rotating wave approximation with the nonlinear photon term $ U=0.1 $, influence of the detuning $ \varDelta\ne0 $ on the (a) excited number $ \hat{N}_{{\rm{e}}} $ in the ground state, (b) nearest neighbor energy level difference$ \text{δ} E_{m},\; m=d, \;0, \;1 $, and (c) second-order correlation function $ G_{2}\left(0\right) $ in the ground state. The red, black and blue line represent $ \varDelta=-2 $, $ \varDelta=0 $ and $ \varDelta=2 $ respectively in panel (b)

    Baidu
  • [1]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [2]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132Google Scholar

    [3]

    Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M, Haroche S 1996 Phys. Rev. Lett. 76 1800Google Scholar

    [4]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [5]

    Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vučković J 2007 Nat. Lett. 450 857Google Scholar

    [6]

    Frisk-Kokum A, Miranowicz A, De Liberato S, Savasta S, Nori F 2019 Nat. Rev. Phys. 1 19Google Scholar

    [7]

    Rossatto D Z, Villas-Bǒas C J, Sanz M, Solano E 2017 Phys. Rev. A 96 013849Google Scholar

    [8]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [9]

    Chen Q, Wang C, He S, Wang K 2012 Phys. Rev. A 86 023822Google Scholar

    [10]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [11]

    Ng K M, Lo C F, Liu K L 2000 Phys. A: Stat. Mech. Appl. 275 463Google Scholar

    [12]

    Rodríguez-Lara B M, Soto-Eguibar F, Cárdenas A Z, Moya-Cessa H M 2013 Opt. Express 21 12888Google Scholar

    [13]

    Rodríguez-Lara B M 2014 J. Opt. Soc. Am. B 31 1719Google Scholar

    [14]

    Penna V, Raffa F A 2014 Int. J. Quantum Inf. 12 1560010Google Scholar

    [15]

    Cordeiro F, Providência C, da Providência J, Nishiyama S 2007 J. Phys. A: Math. Theor. 40 12153Google Scholar

    [16]

    Liu X Y, Ren X Z, Wang C, Gao X L, Wang K L 2020 Commun. Theor. Phys. 72 065502Google Scholar

    [17]

    Felicetti S, Rossatto D Z, Rico E, Solano E, Forn-Díaz P 2018 Phys. Rev. A. 97 013851Google Scholar

    [18]

    Duan L, Xie Y F, Braak D, Chen Q H 2016 J. Phys. A: Math. Theor. 49 464002Google Scholar

    [19]

    Lo C F 2020 Sci. Rep. 10 18761Google Scholar

    [20]

    Cui S, Grémaud B, Guo W, Batrouni G G 2020 Phys. Rev. A 102 033334Google Scholar

    [21]

    Moya-Cessa H, Soto-Eguibar F, Vargas-Martínez J M, Juárez- Amaro R, Zúñiga-Segundo A 2012 Phys. Rep. 513 229Google Scholar

    [22]

    Valverde C, Gonçalves V G, Baseia B 2016 Phys. A: Stat. Mech. Appl. 446 171Google Scholar

    [23]

    Pritchard J D 2012 Ph. D. Dissertation (Durham: Durham University)

    [24]

    Grünwald P 2019 New J. Phys. 21 093003Google Scholar

    [25]

    Li M C, Chen A X 2019 Atom. Appl. Sci. 9 980Google Scholar

    [26]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [27]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoǧlu A 2005 Science 290 2282Google Scholar

    [28]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [29]

    Koch J, Hur K L 2009 Phys. Rev. A. 80 023811Google Scholar

  • [1] Zhong Zhen, Wen Qi-Lin, Liang Jin-Fu. Constraining the size and density composition of the Martian core by using second-order potential coefficient and recent precession rate of gravity field model. Acta Physica Sinica, 2023, 72(2): 029601. doi: 10.7498/aps.72.20221170
    [2] Li Hong, Zhang Si-Qi, Guo Ming, Li Mei-Xuan, Song Li-Jun. Tunable unconventional phonon blockade in Fabry-Perot cavity and optical parametric amplifier composite system. Acta Physica Sinica, 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [3] He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting. Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term. Acta Physica Sinica, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [4] Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation. Acta Physica Sinica, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [5] Xiao Li, Lei Tian-Yu, Liang Yu, Zhao Min, Liu Hui, Zhang Si-Qi, Li Hong, Ma Ji, Wu Xiang-Yao. Two-dimensional function photonic crystal. Acta Physica Sinica, 2016, 65(13): 134207. doi: 10.7498/aps.65.134207
    [6] Han Xiao-Chun, Huang Jing-Zheng, Fang Chen, Zeng Gui-Hua. Research of the impact of group velocity dispersion on the second-order correlation of entangled light field. Acta Physica Sinica, 2015, 64(7): 070301. doi: 10.7498/aps.64.070301
    [7] Yang Chen-Guang, Kan Rui-Feng, Xu Zhen-Yu, Zhang Guang-Le, Liu Jian-Guo. Second derivative of Voigt function. Acta Physica Sinica, 2014, 63(22): 223301. doi: 10.7498/aps.63.223301
    [8] Wang Rui, Wang Yu-Shan. Sensitivity of Delta-P1 approximation model to second-order parameter. Acta Physica Sinica, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [9] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [10] Gan Chen-Li, Zhang Yan-Peng, Yu Xiao-Jun, Nie Zhi-Qiang, Li Ling, Song Jian-Ping, Ge Hao, Jiang Tong, Zhang Xiang-Chen, Lu Ke-Qing. Two-photon asymmetric color-locking second-order stochastic correlation of attosecond polarization beats. Acta Physica Sinica, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [11] Cheng Gui-Ping, Ke Sha-Sha, Zhang Li-Hui, Li Gao-Xiang. The coherence of resonance fluorescence for two atoms in a cavity. Acta Physica Sinica, 2007, 56(2): 830-836. doi: 10.7498/aps.56.830
    [12] Ren Guo-Bin, Wang Zhi, Lou Shu-Qin, Jian Shui-Sheng. Localized orthogonal function model of elliptical-hole photonic crystal fibers. Acta Physica Sinica, 2004, 53(2): 484-489. doi: 10.7498/aps.53.484
    [13] Ge Wei-Kuan, Zhang Yi. Form invariance for a constrained system with second-order reducible differentia l constraints. Acta Physica Sinica, 2003, 52(9): 2105-2108. doi: 10.7498/aps.52.2105
    [14] Wang Yan-Shen. Boundary correlation functions of the six-vertex model with open boundary. Acta Physica Sinica, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [15] Dong Hui, Wu Chong-Qing, Fu Song-Nian. Effect of spinning single-mode fibres on second-order polarization mode dispersi on. Acta Physica Sinica, 2003, 52(8): 1934-1937. doi: 10.7498/aps.52.1934
    [16] Zhu Shan-Hua, Cui Wei-Na, Huang Guo-Xiang. . Acta Physica Sinica, 2002, 51(4): 789-795. doi: 10.7498/aps.51.789
    [17] Su Jing-Hui, Zhao Yan-Cheng. . Acta Physica Sinica, 1995, 44(7): 1023-1028. doi: 10.7498/aps.44.1023
    [18] Qu Wei-xing, Xu Zhi-zhan, Zhang Wen-qi. THE EFFECTS OF SECOND-ORDER IONIZATION PROCESSES ON THE PHOTOELECTRON SPECTRUM OF TWOPHOTON AUTOIONIZATION. Acta Physica Sinica, 1991, 40(5): 686-692. doi: 10.7498/aps.40.686
    [19] XIONG XIAO-MING. THE CORRELATION FUNCTION OF TWO DIMENSIONAL ELECTRON GAS. Acta Physica Sinica, 1989, 38(6): 1012-1015. doi: 10.7498/aps.38.1012
    [20] ZHAN DA-SAN. THE FACTORIZATION PROPERTY OF THE SECOND-ORDER CORRELATION FUNCTION OF A COMPLETELY COHERENT FIELD. Acta Physica Sinica, 1979, 28(1): 117-120. doi: 10.7498/aps.28.117
Metrics
  • Abstract views:  3819
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2022
  • Accepted Date:  18 March 2022
  • Available Online:  20 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回
Baidu
map