Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional function photonic crystal

Xiao Li Lei Tian-Yu Liang Yu Zhao Min Liu Hui Zhang Si-Qi Li Hong Ma Ji Wu Xiang-Yao

Citation:

Two-dimensional function photonic crystal

Xiao Li, Lei Tian-Yu, Liang Yu, Zhao Min, Liu Hui, Zhang Si-Qi, Li Hong, Ma Ji, Wu Xiang-Yao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photonic crystal is a kind of periodic optical nanostructure consisting of two or more materials with different dielectric constants, which has attracted great deal of attention because of its wide range of potential applications in the field of optics. Photonic crystal can be fabricated into one-, or two-, or three- dimensional one. Among them, the two-dimensional photonic crystal turns into a hot focus due to its fantastic optical and electrical properties and relatively simple fabrication technique. Since the tunable band gaps of two-dimensional photonic crystals are beneficial to designing the novel optical devices, to study their optical and electrical properties for controlling the electromagnetic wave is quite valuable in both theoretical and practical aspects. In this work, we propose a new type of two-dimensional function photonic crystal, which can tune the band gaps of photonic crystals. The two-dimensional function photonic crystal is different from the traditional photonic crystal composed of medium columns with spatially invariant dielectric constants, since the dielectric constants of medium column are the functions of space coordinates. Specifically, the photorefractive nonlinear optical effect or electro-optic effect is utilized to turn the dielectric constant of medium column into the function of space coordinates, which results in the formation of two-dimensional function photonic crystal. We use the plane-wave expansion method to derive the eigen-equations for the TE and TM mode. By the Fourier transform, we obtain the Fourier transform form (G) for the dielectric constant function (r) of two-dimensional function photonic crystal, which is more complicated than the Fourier transform in traditional two-dimensional photonic crystal. The calculation results indicate that when the dielectric constant of medium column is a constant, the Fourier transforms for both of them are the same, which implies that the traditional two-dimensional photonic crystal is a special case for the two-dimensional function photonic crystal. Based on the above theory, we calculate the band gap structure of two-dimensional function photonic crystal, especially investigate in detail the corresponding band gap structures of TE and TM modes. The function of dielectric constant can be described as (r) = kr + b, in which k and b are adjustable parameters. Through comparing the calculation results for both kinds of photonic crystals, we can find that the band structures of TE and TM modes in two-dimensional function photonic crystals are quite different from those in traditional two-dimensional photonic crystal. Adjusting parameter k, we can successfully change the number, locations and widths of band gaps, indicating that the band gap structure of two-dimensional function photonic crystal is tunable. These results provide an important design method and theoretical foundation for designing optical devices based on two-dimensional photonic crystal.
      Corresponding author: Wu Xiang-Yao, wuxy2066@163.com
    • Funds: Project supported by Scientific and Technological Development Foundation of Jilin Province (Grant No. 20130101031JC).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Benistyh H, Weisbuch C, Olivier S 2004 SPIE 5360 119

    [4]

    Lou S Q, Wang Z, Ren G B 2004 Acta Opt. Sin. 24 313(in Chinese) [娄淑琴, 王智, 任国斌 2004 光学学报 24 313]

    [5]

    Shang P G, Sacharia A 2003 Opt. Express 11 167

    [6]

    Yin J L, Huang X G, Liu S H 2007 Chin. J. Lasers 34 671 (in Chinese)[殷建玲, 黄旭光, 刘颂豪 2007 中国激光 34 671]

    [7]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese) [王辉, 李永平 2001 50 2172]

    [8]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [9]

    Li Z J, Zhang Y, Li B J 2006 Opt. Express 14 3887

    [10]

    Geng T, Wu N, Dong X M, Gao X M 2016 Acta Phys. Sin. 65 014213 (in Chinese) [耿滔, 吴娜, 董祥美, 高秀敏 2016 65 014213]

    [11]

    Susa N 2002 J. Appl. Phys. 91 3501

    [12]

    Yu J L, Shen H J, Ye S, Hong Q S 2012 Acta Opt. Sin. 32 1106003 (in Chinese) [余建立, 沈宏君, 叶松, 洪求三 2012 光学学报 32 1106003]

    [13]

    Wang X, Chen L C, Liu Y H, Shi Y L, Sun Y 2015 Acta Phys. Sin. 64 174206 (in Chinese) [王晓, 陈立潮, 刘艳红, 石云龙, 孙勇 2015 64 174206]

    [14]

    Klitzing V, Klaus 1986 Rev. Mod. Phys. 58 519

    [15]

    Zhang X, Zhang H J, Wang J, Felser C, Zhang S C 2012 Science 335 1464

    [16]

    Seng F L, Sebastian K, Wen X, Hui C 2015 Phys. Rev. A 91 023811

    [17]

    Lu C, Li W, Jiang X Y, Cao J C 2014 Chin. Phys. B 23 097802

    [18]

    Francesco M, Andrea A 2014 Chin. Phys. B 23 047809

    [19]

    Zhang H Y, Gao Y, Zhang Y P, Wang S F 2011 Chin. Phys. B 20 094101

    [20]

    Dai Y, Liu S B, Wang S Y, Kong X K, Chen C 2014 Chin. Phys. B 23 065202

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Benistyh H, Weisbuch C, Olivier S 2004 SPIE 5360 119

    [4]

    Lou S Q, Wang Z, Ren G B 2004 Acta Opt. Sin. 24 313(in Chinese) [娄淑琴, 王智, 任国斌 2004 光学学报 24 313]

    [5]

    Shang P G, Sacharia A 2003 Opt. Express 11 167

    [6]

    Yin J L, Huang X G, Liu S H 2007 Chin. J. Lasers 34 671 (in Chinese)[殷建玲, 黄旭光, 刘颂豪 2007 中国激光 34 671]

    [7]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese) [王辉, 李永平 2001 50 2172]

    [8]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [9]

    Li Z J, Zhang Y, Li B J 2006 Opt. Express 14 3887

    [10]

    Geng T, Wu N, Dong X M, Gao X M 2016 Acta Phys. Sin. 65 014213 (in Chinese) [耿滔, 吴娜, 董祥美, 高秀敏 2016 65 014213]

    [11]

    Susa N 2002 J. Appl. Phys. 91 3501

    [12]

    Yu J L, Shen H J, Ye S, Hong Q S 2012 Acta Opt. Sin. 32 1106003 (in Chinese) [余建立, 沈宏君, 叶松, 洪求三 2012 光学学报 32 1106003]

    [13]

    Wang X, Chen L C, Liu Y H, Shi Y L, Sun Y 2015 Acta Phys. Sin. 64 174206 (in Chinese) [王晓, 陈立潮, 刘艳红, 石云龙, 孙勇 2015 64 174206]

    [14]

    Klitzing V, Klaus 1986 Rev. Mod. Phys. 58 519

    [15]

    Zhang X, Zhang H J, Wang J, Felser C, Zhang S C 2012 Science 335 1464

    [16]

    Seng F L, Sebastian K, Wen X, Hui C 2015 Phys. Rev. A 91 023811

    [17]

    Lu C, Li W, Jiang X Y, Cao J C 2014 Chin. Phys. B 23 097802

    [18]

    Francesco M, Andrea A 2014 Chin. Phys. B 23 047809

    [19]

    Zhang H Y, Gao Y, Zhang Y P, Wang S F 2011 Chin. Phys. B 20 094101

    [20]

    Dai Y, Liu S B, Wang S Y, Kong X K, Chen C 2014 Chin. Phys. B 23 065202

  • [1] Hu Xiao-Ying, Guo Xiao-Xia, Hu Wen-Tao, Huhe Mandula, Zheng Xiao-Xia, Jing Li-Li. Spin-wave band gaps created by rotating square rods in triangular lattice magnonic crystals. Acta Physica Sinica, 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [2] Zhang Zhong-Jie, Shen Yi-Feng, Zhao Hao. Photonic Dirac point realized in two dimensional annular photonic crystals. Acta Physica Sinica, 2015, 64(14): 147802. doi: 10.7498/aps.64.147802
    [3] Hu Xiao-Ying, Huhemandula, Cao Yong-Jun. Band-structure optimization of triangular lattice magnonic crystals. Acta Physica Sinica, 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [4] Wang Hui, Sha Wei E. I., Huang Zhi-Xiang, Wu Xian-Liang, Shen Jing. A novel eigenvalue method for calculating the band structure of lossy and dispersive photonic crystals. Acta Physica Sinica, 2014, 63(18): 184210. doi: 10.7498/aps.63.184210
    [5] Liu Hui, Liu Dan, Zhao Heng, Gao Yi-Hua. Study on complete photonic band gaps of two-dimensional air annular photonic crystals. Acta Physica Sinica, 2013, 62(19): 194208. doi: 10.7498/aps.62.194208
    [6] Cao Yong-Jun, Tan Wei, Liu Yan. Coupling characteristics of point defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [7] Deng Shu-Peng, Li Wen-Cui, Huang Wen-Bin, Liu Yong-Gang, Peng Zeng-Hui, Lu Xing-Hai, Xuan Li. All-organic two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals. Acta Physica Sinica, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [8] Li Yan-Feng, Hu Xiao-Kun, Wang Ai-Min. Design of high-index broken-ring-based all-solid photonic bandgap fibers. Acta Physica Sinica, 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [9] Yuan Gui-Fang, Han Li-Hong, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Two-dimensional photonic crystal band gap characteristics. Acta Physica Sinica, 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [10] Cao Yong-Jun, Yun Guo-Hong, Narsu. Band-structure calculations of two-dimesional magnonic crystals with plane-wave expansion method*. Acta Physica Sinica, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [11] Qi Li-Mei, Yang Zi-Qiang, Lan Feng, Gao Xi, Shi Zong-Jun, Liang Zheng. Dispersion properties of two-dimensional dispersive and anisotropic-magnetized-plasma photonic crystals. Acta Physica Sinica, 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [12] Yang Yi-Biao, Wang Shuan-Feng, Li Xiu-Jie, Wang Yun-Cai, Liang Wei. Band gap characteristics of two-dimensional photonic crystals made of a triangular lattice of dielectric rods. Acta Physica Sinica, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [13] Cheng Xu-Pan, Cao Quan-Xi. Study of complete bandgap of two-dimensional columnar photonic crystals. Acta Physica Sinica, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [14] Liu Di-Wei, Liu Sheng-Gang. Calculation of photonic band gap and first Brillouin zone for two-dimensional monoclinic lattice photonic crystal. Acta Physica Sinica, 2007, 56(5): 2747-2750. doi: 10.7498/aps.56.2747
    [15] Yin Jian-Ling, Huang Xu-Guang, Liu Song-Hao, Hu She-Jun. Photonic crystal field-sensitive polarizer and switch modulated by nemaic liquid crystals. Acta Physica Sinica, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [16] Liu Huan, Yao Jian-Quan, Li En-Bang, Wen Wu-Qi, Zhang Qiang, Wang Peng. Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures. Acta Physica Sinica, 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [17] Lu Zhi-Gang, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Study of 2D metallic photonic band gap structures. Acta Physica Sinica, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [18] Wen Ji-Hong, Wang Gang, Liu Yao-Zong, Yu Dian-Long. Lumped-mass method on calculation of elastic band gaps of one-dimensional phononic crystals. Acta Physica Sinica, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [19] Xiao San-Shui, Shen Lin-Fang, He Sai-Ling. . Acta Physica Sinica, 2002, 51(12): 2858-2864. doi: 10.7498/aps.51.2858
    [20] Shen Lin-Fang, He Sai-Ling, Wu Liang. . Acta Physica Sinica, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
Metrics
  • Abstract views:  7021
  • PDF Downloads:  464
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2016
  • Accepted Date:  17 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map