-
Potassium channels play an important role in repolarizing the nerve cell action potentials. There are many types of potassium channel proteins, and potassium channels allow potassium ions to specifically pass through the cell membrane, thereby maintaining the resting potential of nerve cells. In this paper, molecular dynamics simulation method is used to simulate the effects of 53.7 THz terahertz wave with different amplitudes on the secondary structure of KcsA potassium channel protein and the potassium ions rate. It is found in this study that under the action of the 53.7 THz terahertz wave, the number of alpha helices in KcsA potassium channel protein decreases, and the number of beta sheets and the number of coils increase. In addition, the 53.7 THz terahertz wave can accelerate potassium ions through the KcsA potassium channel. In this article, the effects of terahertz waves on potassium channel proteins are analyzed through the secondary structure of proteins, and a new perspective for the interaction between terahertz waves and biological functional molecules is presented as well.
-
Keywords:
- potassium channel /
- protein secondary structure /
- potassium ion rate /
- resonance absorption
[1] Nelson M T, Quayle J M 1995 Am. J. Physiol. 268 C799
Google Scholar
[2] Faraci F M, Sobey C G 1996 Clin. Exp. Pharmacol. Physiol. 23 1091
Google Scholar
[3] Orias M 1998 Medicina 58 429
[4] Johnston J, Forsythe I D, Kopp-Scheinpflug C 2010 J. Physiol. 588 3187
Google Scholar
[5] Yellen G 2002 Nature 419 35
Google Scholar
[6] Guan D, Lee J C F, Higgs M H, Spain W J, Foehring R C 2007 J. Neurophys. 97 1931
Google Scholar
[7] Guan D, Armstrong W E, Foehring R C 2013 J. Physiol. 591 4807
Google Scholar
[8] Zhu Z, Cheng C, Chang C, Ren G, Zhang J, Peng Y, Han J, Zhao H 2019 Analyst 144 2504
Google Scholar
[9] 周俊, 刘盛纲 2014 现代应用物理 5 85
Google Scholar
Zhou J, Liu S G 2014 Modern Applied Physics 5 85
Google Scholar
[10] Michele J C, Piero U 2021 Chem. Phys. 155 075102
Google Scholar
[11] Sizov F 2017 SPQEO 20 273
Google Scholar
[12] Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40
Google Scholar
[13] Wilmink G J, Grundt J E 2011 J. Infrared Millimeter Terahertz Waves 32 1074
Google Scholar
[14] Bo W F, Guo L H, Yang Y, Ma J L, Wang K C, Tang J C, Wu Z, Zeng B Q, Gong Y B 2020 IEEE Access 8 10305
Google Scholar
[15] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 JACS 143 4311
Google Scholar
[16] Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C, Wen Q, Song B, Shu Y S 2021 PNAS 118 e2015685118
Google Scholar
[17] Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 2730
Google Scholar
[18] Zhu Z, Chen C, Chang C, Song B 2021 ACS Photonics 8 781
Google Scholar
[19] Zhang X X, He M X, Chen Y, Li C, Zhao J W, Wang P F, Peng X 2019 Chin. Phys. B 28 128702
Google Scholar
[20] Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Rodriguez G 2011 Biomed. Opt. Express 2 2679
Google Scholar
[21] Yamazaki S, Harata M, Ueno Y, Tsubouchi M, Konagaya K, Ogawa Y, Isoyama G, Otani C, Hoshina H 2020 Sci. Rep. 10 9008
Google Scholar
[22] Yamazaki S, Harata M, Idehara T, Konagaya K, Yokoyama G, Hoshina H, Ogawa Y 2018 Sci. Rep. 8 9990
Google Scholar
[23] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002
Google Scholar
[24] Takehiro T, Reiko S, Shiho T, Ken-Ichiro K, Hideki H 2020 Opt. Lett. 45 6078
Google Scholar
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926
Google Scholar
[26] Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S P 2001 BBA-Biomemberanes 1510 1
Google Scholar
[27] Berendsen H J C, Spoel D V D, Drunen R V 1995 Comput. Phys. Commun. 91 43
Google Scholar
[28] Parker M J, Sessions R B, Badcoe I G, Clarke A R 1996 Fold Des. 1 145
Google Scholar
[29] Zhou H X, Wlodek S T, McCammon J A 1998 PNAS 95 9280
Google Scholar
[30] Barron L D, Hecht L, Wilson G 1997 Biochemistry 36 13143
Google Scholar
[31] Fischer S, Smith J C, Verma C S 2001 J. Phys. Chem. B 105 8050
Google Scholar
[32] Leach A R 2001 Molecular Modelling: Principles and Applications (2nd Ed.) (Harlow: Pearson Education Ltd.) pp20−30
[33] Rath A, Johnson R M, Deber C M 2007 Pept. Sci. 88 217
Google Scholar
[34] Moore D T, Berger B W, DeGrado W F 2008 Structure 16 991
Google Scholar
[35] Matthews E E, Zoonens M, Engelman D M 2006 Cell 127 447
Google Scholar
-
-
[1] Nelson M T, Quayle J M 1995 Am. J. Physiol. 268 C799
Google Scholar
[2] Faraci F M, Sobey C G 1996 Clin. Exp. Pharmacol. Physiol. 23 1091
Google Scholar
[3] Orias M 1998 Medicina 58 429
[4] Johnston J, Forsythe I D, Kopp-Scheinpflug C 2010 J. Physiol. 588 3187
Google Scholar
[5] Yellen G 2002 Nature 419 35
Google Scholar
[6] Guan D, Lee J C F, Higgs M H, Spain W J, Foehring R C 2007 J. Neurophys. 97 1931
Google Scholar
[7] Guan D, Armstrong W E, Foehring R C 2013 J. Physiol. 591 4807
Google Scholar
[8] Zhu Z, Cheng C, Chang C, Ren G, Zhang J, Peng Y, Han J, Zhao H 2019 Analyst 144 2504
Google Scholar
[9] 周俊, 刘盛纲 2014 现代应用物理 5 85
Google Scholar
Zhou J, Liu S G 2014 Modern Applied Physics 5 85
Google Scholar
[10] Michele J C, Piero U 2021 Chem. Phys. 155 075102
Google Scholar
[11] Sizov F 2017 SPQEO 20 273
Google Scholar
[12] Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40
Google Scholar
[13] Wilmink G J, Grundt J E 2011 J. Infrared Millimeter Terahertz Waves 32 1074
Google Scholar
[14] Bo W F, Guo L H, Yang Y, Ma J L, Wang K C, Tang J C, Wu Z, Zeng B Q, Gong Y B 2020 IEEE Access 8 10305
Google Scholar
[15] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 JACS 143 4311
Google Scholar
[16] Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C, Wen Q, Song B, Shu Y S 2021 PNAS 118 e2015685118
Google Scholar
[17] Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 2730
Google Scholar
[18] Zhu Z, Chen C, Chang C, Song B 2021 ACS Photonics 8 781
Google Scholar
[19] Zhang X X, He M X, Chen Y, Li C, Zhao J W, Wang P F, Peng X 2019 Chin. Phys. B 28 128702
Google Scholar
[20] Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Rodriguez G 2011 Biomed. Opt. Express 2 2679
Google Scholar
[21] Yamazaki S, Harata M, Ueno Y, Tsubouchi M, Konagaya K, Ogawa Y, Isoyama G, Otani C, Hoshina H 2020 Sci. Rep. 10 9008
Google Scholar
[22] Yamazaki S, Harata M, Idehara T, Konagaya K, Yokoyama G, Hoshina H, Ogawa Y 2018 Sci. Rep. 8 9990
Google Scholar
[23] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002
Google Scholar
[24] Takehiro T, Reiko S, Shiho T, Ken-Ichiro K, Hideki H 2020 Opt. Lett. 45 6078
Google Scholar
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926
Google Scholar
[26] Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S P 2001 BBA-Biomemberanes 1510 1
Google Scholar
[27] Berendsen H J C, Spoel D V D, Drunen R V 1995 Comput. Phys. Commun. 91 43
Google Scholar
[28] Parker M J, Sessions R B, Badcoe I G, Clarke A R 1996 Fold Des. 1 145
Google Scholar
[29] Zhou H X, Wlodek S T, McCammon J A 1998 PNAS 95 9280
Google Scholar
[30] Barron L D, Hecht L, Wilson G 1997 Biochemistry 36 13143
Google Scholar
[31] Fischer S, Smith J C, Verma C S 2001 J. Phys. Chem. B 105 8050
Google Scholar
[32] Leach A R 2001 Molecular Modelling: Principles and Applications (2nd Ed.) (Harlow: Pearson Education Ltd.) pp20−30
[33] Rath A, Johnson R M, Deber C M 2007 Pept. Sci. 88 217
Google Scholar
[34] Moore D T, Berger B W, DeGrado W F 2008 Structure 16 991
Google Scholar
[35] Matthews E E, Zoonens M, Engelman D M 2006 Cell 127 447
Google Scholar
Catalog
Metrics
- Abstract views: 8805
- PDF Downloads: 178
- Cited By: 0