Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of evaluating importance of nodes in complex network based on Tsallis entropy

Yang Song-Qing Jiang Yuan Tong Tian-Chi Yan Yu-Wei Gan Ge-Sheng

Citation:

A method of evaluating importance of nodes in complex network based on Tsallis entropy

Yang Song-Qing, Jiang Yuan, Tong Tian-Chi, Yan Yu-Wei, Gan Ge-Sheng
PDF
HTML
Get Citation
  • Evaluating the importance of nodes in complex networks is an important topic in the research of network characteristics. Its relevant research has a wide range of applications, such as network supervision and rumor control. At present, many methods have been proposed to evaluate the importance of nodes in complex networks, but most of them have the deficiency of one-sided evaluation or too high time complexity. In order to break through the limitations of existing methods, in this paper a novel method of evaluating the importance of complex network nodes is proposed based on Tsallis entropy. This method takes into account both the local and global topological information of the node. It considers the structural hole characteristics and K-shell centrality of the node and fully takes into account the influence of the node itself and its neighboring nodes. To illustrate the effectiveness and applicability of this method, eight real networks are selected from different fields and five existing methods of evaluating node importance are used as comparison methods. On this basis, the monotonicity index, SIR (susceptible-infectious-recovered) model, and Kendall correlation coefficient are used to illustrate the superiority of this method and the relationship among different methods. Experimental results show that this method can effectively and accurately evaluate the importance of nodes in complex networks, distinguish the importance of different nodes significantly, and can show good accuracy of evaluating the node importance under different proportions of nodes. In addition, the time complexity of this method is $ O({n^2}) $, which is suitable for large-scale complex networks.
      Corresponding author: Jiang Yuan, jiangyuan@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61663030, 61663032).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167Google Scholar

    [4]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332Google Scholar

    [5]

    Konstantin K, Angeles S M, San M M 2012 Sci. Rep. 2 292Google Scholar

    [6]

    熊熙, 胡勇 2012 61 150509Google Scholar

    Xiong X, Hu Y 2012 Acta Phys. Sin. 61 150509Google Scholar

    [7]

    Bonacich P 1972 J. Math. Sociol. 2 113Google Scholar

    [8]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [9]

    Opsahl T, Agneessens F, Skvoretz J 2010 Social Networks 32 245Google Scholar

    [10]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [11]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031Google Scholar

    [12]

    Bae J, Kim S 2014 Physica A 395 549Google Scholar

    [13]

    Hou B N, Yao Y P, Liao D S 2012 Physica A 391 4012Google Scholar

    [14]

    王凯莉, 邬春学, 艾均, 苏湛 2019 68 196402Google Scholar

    Wang K L, Wu C X, Ai J, Su Z 2019 Acta Phys. Sin. 68 196402Google Scholar

    [15]

    Burt R S, Kilduff M, Tasselli S 2013 Ann. Rev. Psychol. 64 527Google Scholar

    [16]

    苏晓萍, 宋玉蓉 2015 64 020101Google Scholar

    Su X P, Song R R 2015 Acta Phys. Sin. 64 020101Google Scholar

    [17]

    韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰 2015 64 058902Google Scholar

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015 Acta Phys. Sin. 64 058902Google Scholar

    [18]

    Chen D, Lu L, Shang M S, Zhang Y C, Zhou T. 2012 Physica A 391 1777Google Scholar

    [19]

    Zhang Q, Li M Z, Deng Y 2016 Int. J. Mod. Phys. C 27 10

    [20]

    黄丽亚, 霍宥良, 王青, 成谢锋 2019 68 018901Google Scholar

    Huang L Y, Huo Y L, Wang Q, Cheng X F 2019 Acta Phys. Sin. 68 018901Google Scholar

    [21]

    Wang M, Li W C, Guo Y N, Peng X Y, Li Y X 2020 Physica A 554 124229Google Scholar

    [22]

    Gibbs J W 1902 Elementary Principles in Statistical Mechanics: Developedwith Especial Reference to the Rational Foundation of Thermodynamic (New York: Dover Press) ppA55−A59

    [23]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [24]

    Tsallis C 1988 J. Stat. Phys. 52 479Google Scholar

    [25]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [26]

    Lusseau D, Schneider K, Boisseau O, Haase P, Slooten E, Dawson S 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [27]

    Girvan M, Newman M E J 2002 Proc. Nati. Acad. Sci. 99 7821Google Scholar

    [28]

    Gleiser P M, Danon L 2003 Complex Syst. 6 565Google Scholar

    [29]

    Colizza V, Pastor-Satorras R, Vespignani A 2007 Nat. Phys. 3 276Google Scholar

    [30]

    DuchJ, ArenasA 2005 Phys. Rev. E 72 027104Google Scholar

    [31]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [32]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [33]

    Knight W R 1966 J. Amer. Statist. Associat. 61 436Google Scholar

  • 图 1  Karate网络的拓扑结构

    Figure 1.  Topological structure of the Karate network.

    图 3  不同传播率下SIR和各评估方法之间的Kendall相关系数, 图中黑色虚线为传播阈值$ {\beta _{{\text{th}}}} $ (a) Karate网络; (b) Dolphins网络; (c) Polbooks网络; (d) Jazz网络; (e) USAir网络; (f) C.Elegans网络; (g) Email网络; (h) PowerGrid网络

    Figure 3.  Kendall correlation coefficient between SIR and the evaluation methods under different transmission rates, the black dashed line in the figure is the propagation threshold $ {\beta _{{\text{th}}}} $: (a) Karate network; (b) Dolphins network; (c) Polbooks network; (d) Jazz network; (e) USAir network; (f) C.Elegans network; (g) Email network; (h) PowerGrid network.

    图 2  不同评估方法的单调性指标M (a) Karate网络、Dolphins网络、Polbooks网络和Jazz网络; (b) USAir网络、C.Elegans网络、Email网络和PowerGrid网络

    Figure 2.  Monotonicity index M of different evaluation methods: (a) Karate network, Dolphins network, Polbooks network and Jazz network; (b) USAir network, C.Elegans network, Email network and PowerGrid network.

    图 4  不同比例节点下各评估方法的Kendall相关系数 (a) Karate网络; (b) Dolphins网络; (c) Polbooks网络; (d) Jazz网络; (e) USAir网络; (f) C.Elegans网络; (g) Email网络; (h) PowerGrid网络

    Figure 4.  Kendall correlation coefficient of the evaluation methods under different proportion nodes: (a) Karate network; (b) Dolphins network; (c) Polbooks network; (d) Jazz network; (e) USAir network; (f) C.Elegans network; (g) Email network; (h) PowerGrid network.

    图 5  TSM与其他评估方法之间的关系 (a) Karate网络, β = 0.25; (b) Dolphins网络, β = 0.15; (c) Polbooks网络, β = 0.1; (d) Jazz网络, β = 0.04

    Figure 5.  Relationship between TSM and other evaluation methods (a) Karate network, β = 0.25; (b) Dolphins network, β = 0.15; (c) Polbooksnetwork, β = 0.1; (d) Jazz network, β = 0.04.

    表 1  计算步骤

    Table 1.  Step of the calculation.

    Algorithm 1: TSM algorithm.
    Input: Network $ G(V, E) $
    Output: TSM value for each node
    1. Find neighboring nodes $\varGamma (i)$of node $ {v_i} $
    2. Compute the restraint coefficient ${\rm{RC}}_i$ of node $ {v_i} $
    3. Compute the ${\rm Ks}_i$ value of node $ {v_i} $according to formula $k_i^{\rm m} = k_i^{\rm r} + \lambda k_i^{\rm e}$
    4. Compute $ {q_i} $ for node $ {v_i} $
    5. For node $ {v_j} $ in $\varGamma (i)$ do
    6. ratio = ($1 - {\rm{RC}}_j$)/${\rm{sum}}$($1 - {\rm{RC}}$(all neighbors of $ {v_i} $))
    7. $ T({v_i}) $= (pow(ratio, $ {q_i} $)-ratio)/(1 – $ {q_i} $)
    8. End For
    9. Compute ${\rm{IC} }\left( { {v_i} } \right) = \left( {1 - {\rm{RC} }_i } \right)*T\left( { {v_i} } \right)$
    10. For node $ {v_j} $ in $\varGamma (i)$ do
    11. ${\rm{Cnc}}\left( { {v_i} } \right) = {\rm{sum}}\left( {{\rm{IC}}\left( { {v_j} } \right)} \right)$
    12. End For
    13. For node $ {v_j} $ in $\varGamma (i)$ do
    14. ${\rm{TSM}}\left( { {v_i} } \right) = {\rm{sum}}\left( {{\rm{Cnc}}\left( { {v_j} } \right)} \right)$
    15. End For
    DownLoad: CSV

    表 2  不同方法的时间复杂度

    Table 2.  Time complexity of different methods.

    MethodCategoryTime complexity
    $ {\text{DC}} $Local$ O(n) $
    $ {\text{BC}} $Global$ O({n^3}) $or$ O(nm) $
    $ {\text{MDD}} $Global$ O(n) $
    ${\text{N-Burt} }$Local$ O({n^2}) $
    $ {\text{Cnc + }} $Hybrid$ O(n) $
    $ {\text{AAD}} $Hybrid$ O({n^3}) $ or $ O(nm) $
    $ {\text{IKS}} $Hybrid$ O(n) $
    $ {\text{TSM}} $Hybrid$ O({n^2}) $
    DownLoad: CSV

    表 3  网络的统计特征

    Table 3.  Statistical characteristics of the networks.

    Network$ n $$ m $$\langle k \rangle$$ c $$\langle d \rangle$${\beta _{\rm th} }$$\beta $
    Karate34784.58800.57062.40820.12870.25
    Dolphins621595.12900.25903.35700.14700.15
    Polbooks1054418.40000.48803.07880.08380.10
    Jazz198274227.69700.61752.23500.02590.04
    USAir332212612.80720.74942.73810.02250.03
    C.Elegans45320258.94040.64652.45530.02490.03
    Email113354519.62220.25403.60600.05350.05
    PowerGrid494165942.66910.080118.98920.25830.25
    DownLoad: CSV

    表 4  Karate网络的节点重要度评估结果

    Table 4.  Node importance evaluation results in the Karate network.

    排名节点DC节点BC节点MDD节点N-Burt节点Cnc+节点AAD节点IKS节点TSM
    1${v_{34}}$17${v_1}$0.4119${v_{34}}$11.9${v_{34}}$0.1682${v_{34}}$1156${v_{34}}$17.4666${v_1}$1.5215${v_{34}}$89.8687
    2${v_1}$16${v_{34}}$0.2862${v_1}$11.2${v_1}$0.1731${v_1}$1024${v_1}$16.4976${v_{34}}$1.4782${v_1}$81.8535
    3${v_{33}}$12${v_{33}}$0.1367${v_{33}}$8.7${v_3}$0.2257${v_{33}}$576${v_{33}}$12.6498${v_3}$1.2610${v_{33}}$72.0759
    4${v_3}$10${v_3}$0.1352${v_3}$7.6${v_{33}}$0.2746${v_3}$400${v_3}$10.7712${v_{33}}$1.2307${v_3}$70.7235
    5${v_2}$9${v_{32}}$0.1301${v_2}$6.9${v_{32}}$0.2793${v_2}$324${v_2}$9.8490${v_2}$1.0208${v_2}$59.4435
    6${v_4}$6${v_9}$0.0526${v_4}$5.1${v_9}$0.3266${v_4}$144${v_4}$7.2111${v_9}$0.9425${v_9}$47.6431
    7${v_{32}}$6${v_2}$0.0508${v_{32}}$5.1${v_2}$0.3357${v_{32}}$108${v_{32}}$6.7095${v_{14}}$0.9411${v_{14}}$46.9374
    8${v_9}$5${v_{14}}$0.0432${v_{14}}$5${v_{14}}$0.3541${v_9}$100${v_9}$6.4033${v_{32}}$0.9004${v_4}$45.5295
    9${v_{14}}$5${v_{20}}$0.0306${v_9}$4.7${v_{28}}$0.3674${v_{14}}$100${v_{14}}$6.4033${v_4}$0.8343${v_{32}}$41.3938
    10${v_{24}}$5${v_6}$0.0282${v_{24}}$4.1${v_{31}}$0.3810${v_{24}}$75${v_{24}}$5.8310${v_{31}}$0.7137${v_{31}}$37.1209
    11${v_6}$4${v_7}$0.0282${v_8}$4${v_{20}}$0.3935${v_8}$64${v_{31}}$5.6569${v_{24}}$0.7027${v_8}$35.7453
    12${v_7}$4${v_{28}}$0.0210${v_{31}}$4${v_{29}}$0.4115${v_{31}}$64${v_8}$5.6569${v_8}$0.6996${v_{24}}$33.3428
    13${v_8}$4${v_{24}}$0.0166${v_{28}}$3.7${v_{24}}$0.4348${v_6}$48${v_6}$5.0001${v_{20}}$0.6397${v_{28}}$29.9028
    14${v_{28}}$4${v_{31}}$0.0136${v_{30}}$3.7${v_4}$0.4684${v_7}$48${v_7}$5.0001${v_{30}}$0.6050${v_{20}}$29.6927
    15${v_{30}}$4${v_4}$0.0112${v_6}$3.4${v_{26}}$0.4845${v_{28}}$48${v_{28}}$5.0000${v_{28}}$0.6039${v_{30}}$29.1552
    DownLoad: CSV

    表 5  不同评估方法的单调性指标M

    Table 5.  Monotonicity index M of different evaluation methods.

    Network$ M{\text{(DC)}} $M (BC)M (MDD)$M{\text{(N-Burt)} }$$ M{\text{(Cnc + )}} $M (ADD)$ M{\text{(IKS)}} $$ M{\text{(TSM)}} $
    Karate0.70790.77230.75360.95420.94720.83950.96120.9542
    Dolphins0.83120.96230.90410.96230.98950.96230.99050.9979
    Polbooks0.82520.99740.907710.99710.999611
    Jazz0.96590.98850.98830.99830.99930.99810.99940.9994
    USAir0.85860.69700.88710.94530.99450.90680.99430.9951
    C.Elegans0.79220.87400.87480.99830.99800.93810.99740.9990
    Email0.88740.94000.92290.96500.99910.96290.99950.9999
    PowerGrid0.59270.83130.69280.87700.95680.87480.96670.9999
    DownLoad: CSV

    表 6  选定传播率下SIR和各评估方法之间的Kendall相关系数

    Table 6.  Kendall correlation coefficient between SIR and evaluation methods under a certain transmission rate.

    Network$\tau ({\text{DC, }}\sigma {\text{)}}$$\tau ({\text{BC, }}\sigma {\text{)}}$$\tau ({\text{MDD, }}\sigma {\text{)}}$$\tau ({\text{N-Burt, } }\sigma {\text{)} }$$\tau ({\text{Cnc + , }}\sigma {\text{)}}$$\tau ({\text{AAD, }}\sigma {\text{)}}$$\tau ({\text{IKS, }}\sigma {\text{)}}$$\tau ({\text{TSM, }}\sigma {\text{)}}$
    Karate0.64350.56510.67560.76830.92580.65910.84450.9637
    Dolphins0.77680.56430.81810.72820.86110.75320.85260.9492
    Polbooks0.75280.35790.80290.70370.90980.76910.91650.9436
    Jazz0.81850.46280.85030.82160.91320.82350.88040.9363
    USAir0.69820.47440.71750.79290.90470.69950.90550.9461
    C.Elegans0.63760.47110.65210.62510.81270.6590.82170.8570
    Email0.79110.64670.80150.77350.89800.77970.87580.9250
    PowerGrid0.54690.41670.57860.42980.73410.55630.73990.8207
    DownLoad: CSV
    Baidu
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167Google Scholar

    [4]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332Google Scholar

    [5]

    Konstantin K, Angeles S M, San M M 2012 Sci. Rep. 2 292Google Scholar

    [6]

    熊熙, 胡勇 2012 61 150509Google Scholar

    Xiong X, Hu Y 2012 Acta Phys. Sin. 61 150509Google Scholar

    [7]

    Bonacich P 1972 J. Math. Sociol. 2 113Google Scholar

    [8]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [9]

    Opsahl T, Agneessens F, Skvoretz J 2010 Social Networks 32 245Google Scholar

    [10]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [11]

    Zeng A, Zhang C J 2013 Phys. Lett. A 377 1031Google Scholar

    [12]

    Bae J, Kim S 2014 Physica A 395 549Google Scholar

    [13]

    Hou B N, Yao Y P, Liao D S 2012 Physica A 391 4012Google Scholar

    [14]

    王凯莉, 邬春学, 艾均, 苏湛 2019 68 196402Google Scholar

    Wang K L, Wu C X, Ai J, Su Z 2019 Acta Phys. Sin. 68 196402Google Scholar

    [15]

    Burt R S, Kilduff M, Tasselli S 2013 Ann. Rev. Psychol. 64 527Google Scholar

    [16]

    苏晓萍, 宋玉蓉 2015 64 020101Google Scholar

    Su X P, Song R R 2015 Acta Phys. Sin. 64 020101Google Scholar

    [17]

    韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰 2015 64 058902Google Scholar

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015 Acta Phys. Sin. 64 058902Google Scholar

    [18]

    Chen D, Lu L, Shang M S, Zhang Y C, Zhou T. 2012 Physica A 391 1777Google Scholar

    [19]

    Zhang Q, Li M Z, Deng Y 2016 Int. J. Mod. Phys. C 27 10

    [20]

    黄丽亚, 霍宥良, 王青, 成谢锋 2019 68 018901Google Scholar

    Huang L Y, Huo Y L, Wang Q, Cheng X F 2019 Acta Phys. Sin. 68 018901Google Scholar

    [21]

    Wang M, Li W C, Guo Y N, Peng X Y, Li Y X 2020 Physica A 554 124229Google Scholar

    [22]

    Gibbs J W 1902 Elementary Principles in Statistical Mechanics: Developedwith Especial Reference to the Rational Foundation of Thermodynamic (New York: Dover Press) ppA55−A59

    [23]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [24]

    Tsallis C 1988 J. Stat. Phys. 52 479Google Scholar

    [25]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [26]

    Lusseau D, Schneider K, Boisseau O, Haase P, Slooten E, Dawson S 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [27]

    Girvan M, Newman M E J 2002 Proc. Nati. Acad. Sci. 99 7821Google Scholar

    [28]

    Gleiser P M, Danon L 2003 Complex Syst. 6 565Google Scholar

    [29]

    Colizza V, Pastor-Satorras R, Vespignani A 2007 Nat. Phys. 3 276Google Scholar

    [30]

    DuchJ, ArenasA 2005 Phys. Rev. E 72 027104Google Scholar

    [31]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [32]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [33]

    Knight W R 1966 J. Amer. Statist. Associat. 61 436Google Scholar

  • [1] Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan. A multidimensional node importance evaluation method based on graph convolutional networks. Acta Physica Sinica, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [2] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] Ding Hui-Qiang, Dai Ting-Ting, Cheng Luan, Zhang Wei-Ning, Wang En-Ke. Distribution of low-$p_{\rm{T}}$ $\varUpsilon(1 S)$ in hadron gas. Acta Physica Sinica, 2023, 72(19): 192501. doi: 10.7498/aps.72.20230990
    [4] Liu Hui, Wang Bing-Jun, Lu Jun-An, Li Zeng-Yang. Node-set importance and optimization algorithm of nodes selection in complex networks based on pinning control. Acta Physica Sinica, 2021, 70(5): 056401. doi: 10.7498/aps.70.20200872
    [5] Huang Li-Ya,  Huo You-Liang,  Wang Qing,  Cheng Xie-Feng. Network heterogeneity based on K-order structure entropy. Acta Physica Sinica, 2019, 68(1): 018901. doi: 10.7498/aps.68.20181388
    [6] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [7] Ma Kun, Jiao Zheng, Jiang Feng-Jian, Ye Jian-Feng, Lv Hai-Jiang, Chen Zhan-Bin. Theoretical calculation of Kα and Kβ X-ray satellite and hypersatellite structures for hollow argon atoms. Acta Physica Sinica, 2018, 67(17): 173201. doi: 10.7498/aps.67.20180553
    [8] Yang Jian-Nan, Liu Jian-Guo, Guo Qiang. Node importance idenfication for temporal network based on inter-layer similarity. Acta Physica Sinica, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [9] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [10] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [11] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [12] Su Xiao-Ping, Song Yu-Rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks. Acta Physica Sinica, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [13] Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [14] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [15] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [16] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [17] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [18] Tang Ying-Gan, Di Qiu-Yan, Zhao Li-Xing, Guan Xin-Ping, Liu Fu-Cai. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy. Acta Physica Sinica, 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [19] LIAO BO-QIN, LIN XIN-WEI. K-STRUCTURES OF THE CSM WAVE FUNCTIONS OF 164Er96 AND 166Er98. Acta Physica Sinica, 1991, 40(11): 1741-1748. doi: 10.7498/aps.40.1741
    [20] PENG HWAN-WU. IMPORTANCE OF LIFE TIME CORRELATION EXPERIMENTS. Acta Physica Sinica, 1962, 18(3): 165-166. doi: 10.7498/aps.18.165
Metrics
  • Abstract views:  7546
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2021
  • Accepted Date:  29 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回
Baidu
map