Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In situ resistance analysis of MgB2 formation process from Mg(BH4)2

Guo Chen Cai Xin-Wei Luo Wen-Hao Huang Zi-Geng Feng Qing-Rong Gan Zi-Zhao

Citation:

In situ resistance analysis of MgB2 formation process from Mg(BH4)2

Guo Chen, Cai Xin-Wei, Luo Wen-Hao, Huang Zi-Geng, Feng Qing-Rong, Gan Zi-Zhao
PDF
HTML
Get Citation
  • Mg(BH4)2 was previously studied as a promising hydrogen storage material, because of its high gravimetric storage capacities for hydrogen and suitable thermodynamic properties. Mg(BH4)2 began to decompose at about 300 ℃, and formed MgB2 at the end of hydrogen desorption process with the weight content of 14.9% of hydrogen lost. Aside from the prominent hydrogen storage property, the decomposition process from Mg(BH4)2 to MgB2 can be a potential method for fabricating superconducting MgB2 at a low sintering temperature. In this paper, MgB2 bulk was prepared by an in-situ reaction, using the Mg(BH4)2 pressed block as a precursor. The resistance change of the sample was monitored during the Mg(BH4)2 decomposition process and the resistance-temperature (R-T) curve of this process was recorded. Phase of MgH2, Mg and B were formed as the block slowly release its hydrogen before MgB2 occurred. According to the R-T curve, the phase formation of MgB2 started in a relatively low temperature of 410 ℃. Because MgB2 was critically formed by Mg and B derived from Mg(BH4)2, we can compare our formation temperature with previous study on MgB2 prepared by Mg and B in different particle size. The fitting result indicated that the particle size of Mg and B harvest from Mg(BH4)2 decomposition was only 3.4 nm on average. The nearly atomic level mixture of Mg and B resulted in a high chemical reactivity, which was the main reason for low sintering temperature. X-ray diffraction results showed that the purity of MgB2 was 95.2%, and the size of MgB2 grains was 10–18 nm. SEM images showed that the MgB2 bulk had a porous structure and poor connectivity, which was caused by large amount the hydrogen release during the decomposition. MgB2 nanofibers can also be observed inside the bulk. In the superconductivity test, the superconducting transition temperature of the bulk was 35 K. After all, such in situ method to fabricate MgB2 showed a great advantage in some aspects, as its low-cost precursors, low sintering temperature, small grain-size and high superconducting transition temperature in the formed MgB2, which have the potential in industrial scale fabrication of MgB2 bulks and wires.
      Corresponding author: Cai Xin-Wei, xwcai@pku.edu.cn
    [1]

    Nakamori Y, Miwa K, Ninomiya A, Li H, Ohba N, Towata S I, Zuettel A, Orimo S I 2006 Phys. Rev. B 74 045126Google Scholar

    [2]

    Voss J, Hummelshøj J S, Łodziana Z, Vegge T 2008 J. Phys.: Condens. Matter 21 012203Google Scholar

    [3]

    Li H W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S, Orimo S 2008 Acta Mater. 56 1342Google Scholar

    [4]

    Chlopek K, Frommen C, Leon A, Zabara O, Fichtner M 2007 J. Mater. Chem. 17 3496Google Scholar

    [5]

    Fujii H, Ozawa K 2011 Supercond. Sci. Technol. 24 095009Google Scholar

    [6]

    Luo W H, Huang Z G, Cai X W, Niu R R, Nie R J, Feng Q R, Wang F R, Gan Z Z 2019 Supercond. Sci. Technol. 32 085006Google Scholar

    [7]

    Yang J Z, Zhang X Z, Zheng J, Song P, Li X G 2010 Scripta Mater. 64 225Google Scholar

    [8]

    Yang J, Zheng J, Zhang X Z, Li Y Q, Yang R, Feng Q R, Li X G 2010 Chem. Commun. 46 7530Google Scholar

    [9]

    Chen L P, Zhang C, Wang Y B, Wang Y, Feng Q R, Gan Z Z, Yang J Z, Li X G 2010 Supercond. Sci. Technol. 24 015002Google Scholar

    [10]

    张辰, 陈丽萍, 王银博, 吴桃李, 刘文静, 刘雨潇, 薛驰, 冯庆荣 2011 低温 33 97Google Scholar

    Zhang C, Chen L P, Wang Y B, Wu T L, Liu W J, Liu Y X, Xue C, Feng Q R 2011 Chin. J. Low Temp. Phys. 33 97Google Scholar

    [11]

    郭峥山, 陈艺灵, 冯庆荣 2012 真空科学与技术学报 32 693Google Scholar

    Guo Z S, Chen Y L, Feng Q R 2012 J. Vac. Sci. Technol. 32 693Google Scholar

    [12]

    Chen Y L, Liao X B, Cai X Q, Yang C, Guo Z S, Niu R R, Zhang Y, Jia C Y, Feng Q R 2017 Physica C 542 34Google Scholar

    [13]

    Guo C, Wang H Z, Cai X W, Luo W H, Huang Z G, Zhang Y, Feng Q R, Gan Z Z 2021 Physica C 584 1353863Google Scholar

    [14]

    Hanada N, Chopek K, Frommen C, Lohstroh W, Fichtner M 2008 J. Mater. Chem. 18 2611Google Scholar

    [15]

    Zhuang C G, Liu X X, Guo T, Wang B, Li X G, Chen C P, Feng Q R 2007 Supercond. Sci. Technol. 20 1125Google Scholar

    [16]

    Chen C P, Zhou Z J, Li X G, Xu J, Wang Y H, Gao Z X, Feng Q R 2004 Solid State Commun. 131 275Google Scholar

    [17]

    DeFouw J D, Quintana J P, Dunand D C 2008 Acta Mater. 56 1680Google Scholar

    [18]

    冯庆荣, 陈晋平, 徐军, 王宇昊, 陈鑫 2004 低温 26 46Google Scholar

    Feng Q R, Chen C P, Xu J, Wang Y H, Chen X 2004 Chin. J. Low Temp. Phys. 26 46Google Scholar

    [19]

    Yamamoto A, Shimoyama J-i, Ueda S, Katsura Y, Horii S, Kishio K 2004 Supercond. Sci. Technol. 18 116Google Scholar

    [20]

    Yamamoto A, Shimoyama J, Ueda S, Katsura Y, Iwayama I, Horii S, Kishio K 2006 Physica C 445-448 806Google Scholar

  • 图 1  Mg(BH4)2原位烧结制备的MgB2块材

    Figure 1.  MgB2 bulk fabricated by in situ reaction from Mg(BH4)2

    图 2  Mg(BH4)2原位烧结的电阻温度曲线及微分曲线

    Figure 2.  R-T curve and differential curve for in situ reaction from Mg(BH4)2.

    图 3  成相温度与Mg颗粒度之间的拟合曲线

    Figure 3.  Fitting curve of Mg particle size dependence of phase forming temperature.

    图 4  Mg(BH4)2原位烧结制备的MgB2的XRD衍射图

    Figure 4.  XRD diffraction pattern of MgB2 fabricated by in situ reaction from Mg(BH4)2.

    图 5  50 Oe下MgB2样品的抗磁性曲线, 插图为超导转变温度(TC)附近的放大曲线

    Figure 5.  M-T curve of the MgB2 sample measured under 50 Oe, the inset shows the enlarged curve near TC.

    图 6  Mg(BH4)2制备的MgB2的SEM图像 (a) MgB2块材的整体形貌; (b) Mg(BH4)2制备出的MgB2纳米纤维; (c) MgB2纳米纤维生长形成的MgB2晶块

    Figure 6.  SEM image of MgB2 fabricated by Mg(BH4)2: (a) The morphology of the MgB2 bulk; (b) MgB2 nanofibers generated from Mg(BH4)2; (c) MgB2 grains formed by MgB2 nanofibers.

    表 1  不同颗粒度Mg粉对应的MgB2成相温度

    Table 1.  Phase forming temperature of MgB2 fabricated by different sized Mg powders.

    样品编号1234
    TPF/K908876842727
    a/μm10045150.04
    DownLoad: CSV
    Baidu
  • [1]

    Nakamori Y, Miwa K, Ninomiya A, Li H, Ohba N, Towata S I, Zuettel A, Orimo S I 2006 Phys. Rev. B 74 045126Google Scholar

    [2]

    Voss J, Hummelshøj J S, Łodziana Z, Vegge T 2008 J. Phys.: Condens. Matter 21 012203Google Scholar

    [3]

    Li H W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S, Orimo S 2008 Acta Mater. 56 1342Google Scholar

    [4]

    Chlopek K, Frommen C, Leon A, Zabara O, Fichtner M 2007 J. Mater. Chem. 17 3496Google Scholar

    [5]

    Fujii H, Ozawa K 2011 Supercond. Sci. Technol. 24 095009Google Scholar

    [6]

    Luo W H, Huang Z G, Cai X W, Niu R R, Nie R J, Feng Q R, Wang F R, Gan Z Z 2019 Supercond. Sci. Technol. 32 085006Google Scholar

    [7]

    Yang J Z, Zhang X Z, Zheng J, Song P, Li X G 2010 Scripta Mater. 64 225Google Scholar

    [8]

    Yang J, Zheng J, Zhang X Z, Li Y Q, Yang R, Feng Q R, Li X G 2010 Chem. Commun. 46 7530Google Scholar

    [9]

    Chen L P, Zhang C, Wang Y B, Wang Y, Feng Q R, Gan Z Z, Yang J Z, Li X G 2010 Supercond. Sci. Technol. 24 015002Google Scholar

    [10]

    张辰, 陈丽萍, 王银博, 吴桃李, 刘文静, 刘雨潇, 薛驰, 冯庆荣 2011 低温 33 97Google Scholar

    Zhang C, Chen L P, Wang Y B, Wu T L, Liu W J, Liu Y X, Xue C, Feng Q R 2011 Chin. J. Low Temp. Phys. 33 97Google Scholar

    [11]

    郭峥山, 陈艺灵, 冯庆荣 2012 真空科学与技术学报 32 693Google Scholar

    Guo Z S, Chen Y L, Feng Q R 2012 J. Vac. Sci. Technol. 32 693Google Scholar

    [12]

    Chen Y L, Liao X B, Cai X Q, Yang C, Guo Z S, Niu R R, Zhang Y, Jia C Y, Feng Q R 2017 Physica C 542 34Google Scholar

    [13]

    Guo C, Wang H Z, Cai X W, Luo W H, Huang Z G, Zhang Y, Feng Q R, Gan Z Z 2021 Physica C 584 1353863Google Scholar

    [14]

    Hanada N, Chopek K, Frommen C, Lohstroh W, Fichtner M 2008 J. Mater. Chem. 18 2611Google Scholar

    [15]

    Zhuang C G, Liu X X, Guo T, Wang B, Li X G, Chen C P, Feng Q R 2007 Supercond. Sci. Technol. 20 1125Google Scholar

    [16]

    Chen C P, Zhou Z J, Li X G, Xu J, Wang Y H, Gao Z X, Feng Q R 2004 Solid State Commun. 131 275Google Scholar

    [17]

    DeFouw J D, Quintana J P, Dunand D C 2008 Acta Mater. 56 1680Google Scholar

    [18]

    冯庆荣, 陈晋平, 徐军, 王宇昊, 陈鑫 2004 低温 26 46Google Scholar

    Feng Q R, Chen C P, Xu J, Wang Y H, Chen X 2004 Chin. J. Low Temp. Phys. 26 46Google Scholar

    [19]

    Yamamoto A, Shimoyama J-i, Ueda S, Katsura Y, Horii S, Kishio K 2004 Supercond. Sci. Technol. 18 116Google Scholar

    [20]

    Yamamoto A, Shimoyama J, Ueda S, Katsura Y, Iwayama I, Horii S, Kishio K 2006 Physica C 445-448 806Google Scholar

  • [1] Zhou Zhang-Yu, Xiao Han, Wang Song, Fu Xing-Hua, Yan Jiang. Preparation and DC characteristics of MgB2/B/MgB2 Josephson junctions. Acta Physica Sinica, 2016, 65(18): 180301. doi: 10.7498/aps.65.180301
    [2] Sun Xuan, Huang Xu, Wang Ya-Zhou, Feng Qing-Rong. Properties of MgB2 ultra-thin films grown by hybrid physical-chemical vapor deposition. Acta Physica Sinica, 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [3] Sun Hui-Hui, Yang Ye, Wang Lei, Cheng C. H., Feng Yong, Zhao Yong. Evidence of δl pinning induced by citric acid doping in MgB2 superconductor. Acta Physica Sinica, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [4] Han Xiao-Qin, Jiang Li-Juan, Liu Yu-Fang. Structure and potential energy function of MgB and MgB2(1A1). Acta Physica Sinica, 2010, 59(7): 4542-4546. doi: 10.7498/aps.59.4542
    [5] Ruan Wen, Hu Qiang-Lin, Xie An-Dong, Yu Xiao-Guang, Luo Wen-Lang, Zhu Zheng-He. Molecule structure and analytical potential energy function for the ground state of MgB2. Acta Physica Sinica, 2009, 58(12): 8188-8193. doi: 10.7498/aps.58.8188
    [6] Yu Zeng-Qiang, Wu Ke, Ma Xiao-Bai, Nie Rui-Juan, Wang Fu-Ren. Fabrication of MgB2 films via multilayer ex-situ annealing. Acta Physica Sinica, 2007, 56(1): 512-517. doi: 10.7498/aps.56.512
    [7] Yu Zheng-Guang, Ma Yan-Wei, Wang Dong-Liang, Zhang Xian-Ping, Gao Zhao-Shun, Watanabe K., Huang Wei-Wen. Fabrication and characteristics of long MgB2 wire with high superconducting properties. Acta Physica Sinica, 2007, 56(11): 6680-6684. doi: 10.7498/aps.56.6680
    [8] Shi Li-Bin, Ren Jun-Yuan, Zhang Feng-Yun, Zhang Guo-Hua, Yu Zeng-Qiang. A study on resistive transition and anisotropy of MgB2/Al2O3 superconducting thin films. Acta Physica Sinica, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [9] Zhang Xian-Ping, Ma Yan-Wei, Gao Zhao-Shun, Yu Zheng-Guang, K. Watanabe, Wen Hai-Hu. Effect of nanoscale C and SiC doping on the superconducting properties of MgB2 tapes. Acta Physica Sinica, 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [10] Chen Rong-Hua, Zhu Ming-Yuan, Li Ying, Li Wen-Xian, Jin Hong-Ming, Dou Shi-Xue. Effect of pulsed magnetic field on critical current in carbon-nanotube-doped MgB2 wires. Acta Physica Sinica, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [11] Wang Shu-Fang, Jin B. B., Liu Zhen, Zhou Yue-Liang, Chen Zheng-Hao, Lü Hui-Bin, Cheng Bo-Lin, Yang Guo-Zhen. Microwave measurements of the MgB2 thin film. Acta Physica Sinica, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [12] Wang Shu-Fang, Zhu Ya-Bin, Zhang Qing, Liu Zhen, Zhou Yue-Liang, Chen Zheng-Hao, Lü Hui-Bin, Yang Guo-Zhen. MgB2 thick films grown on metal substrates using the electrophoresis technique. Acta Physica Sinica, 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [13] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Fan Rong, Chen Xian-Hui, Cao Lie-Zhao. Thermal conductivity of two-energy-gap superconductor MgB2. Acta Physica Sinica, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [14] Wu Bai-Mei, Li Bo, Yang Dong-Sheng, Zheng Wei-Hua, Li Shi-Yan, Cao Lie-Zhao, Chen Xian-Hui. The thermal/electronic transport properties of new superconductor MgB2 and MgCNi3. Acta Physica Sinica, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [15] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Chen Xian-Hui, Cao Lie-Zhao. Anomalous thermal conductivity enhancement in the mixed state of MgB2. Acta Physica Sinica, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [16] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [17] . Acta Physica Sinica, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [18] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [19] YANG HONG-SHUN, YU MIN, LI SHI-YAN, LI PENG-CHENG, CHAI YI SHENG, ZHANG LIANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE THERMOPOWER AND RESISTIVITY OF A NEW SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [20] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
Metrics
  • Abstract views:  4654
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2021
  • Accepted Date:  25 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map