搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgB2/B/MgB2约瑟夫森结的制备与直流特性

周章渝 肖寒 王松 傅兴华 闫江

引用本文:
Citation:

MgB2/B/MgB2约瑟夫森结的制备与直流特性

周章渝, 肖寒, 王松, 傅兴华, 闫江

Preparation and DC characteristics of MgB2/B/MgB2 Josephson junctions

Zhou Zhang-Yu, Xiao Han, Wang Song, Fu Xing-Hua, Yan Jiang
PDF
导出引用
  • 本文采用MgB2薄膜的混合物理化学气相沉积制备技术和金属掩膜版工艺,以B膜为势垒层在单晶Al2O3(0001)基底上制作了纵向三明治结构的MgB2/B/MgB2 约瑟夫森结. 应用标准四引线法对该超导结的R-T曲线和不同温度下的直流I-V曲线进行了测量研究. 实验结果表明,制作的MgB2/B/MgB2约瑟夫森结超导开启温度为31.3 K,4.2 K时临界电流密度为0.52 A/cm2,通过对直流特性I-V曲线的微分拟合,清晰地观测到MgB2的3D带的能隙为2.13 meV.
    Since the discovery of its superconductivity, magnesium diboride (MgB2) has been identified as a promising superconductor to be used in Josephson junction devices due to its high transition temperature, large energy gap, long coherence length, and expected easier fabrication of Josephson junctions as compared with high temperature superconductors. The high-quality MgB2 films and excellent tunnel barrier materials are the core elements for a Josephson junction. Here in this paper, all MgB2 thin film tunnel junctions with B tunnel barriers are fabricated in situ on sapphire substrates and their tunneling characteristics re investigated. The experimental results indicate that the MgB2/B/MgB2 junctions exhibit good tunneling characteristics. The deposition of the MgB2/B/MgB2 trilayer is carried out in a completely in situ process. The bottom and top MgB2 layers are grown to a thickness of 100 nm by hybrid physical-chemical vapor deposition (HPCVD) technique at about 973 K and in 102 Pa Ar atmosphere on a single crystal Al2O3 (0001) substrate. The 35-nm-thick amorphous B insulator layer is deposited using chemical vapor deposition method at 723 K and in 103 Pa pure Ar. In the process of the top MgB2 layer deposition, the amorphous B reacts with Mg in Mg vapor, leading to its thickness decreasing to 10 nm. Square-shaped junctions each with a size of 4 mm5 mm are determined by the metallic mask method. The resistivity temperature (R-T) curves and the DC current-voltage (I-V) curves of the MgB2/B/MgB2 junctions at different temperatures are measured by the four-point probe method in the physical property measurement system (PPMS). The experimental results show excellent superconducting properties of the top and bottom superconductor with high Tc (above 39.5 K), appreciable Jc values (107-108 A/cm2). In the I-V characteristics of junction at temperatures ranging from 4.2 K to 39.2 K, the junctions exhibit clear Josephson tunneling characteristics with jc~0.52 A/cm2 at 4.2 K, which remains nonzero up to 31.3 K. The hysteresis is pronounced at 4.2 K, becoming smaller as temperature increases, and eventually disappearing at around 19.2 K. By using the differential I-V curves, only gap is observed in differential conductance vs. voltage characteristics (dI/dV-V) curves, because MgB2 layer grown using HPCVD technique is always c-axis oriented and more than 99% contribution to the conduction is from band charge carriers.
      通信作者: 周章渝, zzy9404@sina.com
    • 基金项目: 贵州大学博士科研启动基金(批准号:(2013)18号)资助的课题.
      Corresponding author: Zhou Zhang-Yu, zzy9404@sina.com
    • Funds: Project supported by the Scientific Research Staring Foundation for the Doctor, Guizhou University, China (Grant No. (2013)18).
    [1]

    Likharev K K, Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3

    [2]

    Kameda Y, Yorozu S, Hashimoto Y, Terai H, Fujimaki A, Yoshikawa N 2005 IEEE Trans. Appl. Supercond. 15 423

    [3]

    Mukanov O A, Gupta D, Kadin A M, Semenov V K 2004 Proc. IEEE 92 1564

    [4]

    Mukhanov O A 2011 IEEE Trans. Appl. Supercond. 21 760

    [5]

    Brake H J M T, Wiegerinck G F M 2002 Cryogenics 42 705

    [6]

    Chen W, Rylyakov A V, Patel V, Lukens J E 1999 IEEE Trans. Appl. Supercond. 9 3212

    [7]

    Choi H J, Roundy D, Sun H, Louie S G 2002 Nature 418 758

    [8]

    Chen K, Zhuang C G, Li Q, Weng X, Redwing J M, Xi X X 2011 IEEE Trans. Appl. Supercond. 21 115

    [9]

    Shim H J, Yoon K S, Moodera J S, Hong J P 2007 Appl. Phys. Lett. 90 212509

    [10]

    Singh R K, Gandikota R, Kim J, Newman N, Rowell J M 2006 Appl. Phys. Lett. 89 042512

    [11]

    Kim T H, Moodera J S 2004 Appl. Phys. Lett. 85 434

    [12]

    Cybart S A, Chen K, Cui Y, Li Q, Xi X X, Dynes R C 2006 Appl. Phys. Lett. 88 012509

    [13]

    Ke Y Q, Zhou D F, Liu J, Zen M, Zhu H M, Zhang Y B 2009 Chin. J. Low Temp. Phys. 31 166 (in Chinese) [柯一青, 周迪帆, 刘珏, 曾敏, 朱红妹, 张义邴 2009 低温 31 166]

    [14]

    Xu Z 2014 M. S. Thesis (Lanzhou: University of Lan Zhou) (in Chinese) [许壮 2014 硕士学位论文 (兰州: 兰州大学)]

    [15]

    Zhou Z Y, Wang S, Yang F S, Yang J, Fu X H 2013 Chin. J. Low Temp. Phys. 35 425 (in Chinese) [周章渝, 王松, 杨发顺, 杨健, 傅兴华 2013 低温 35 425]

    [16]

    Zhou Z Y, Wang S, Yang F S, Yang J, Fu X H 2013 J. Funct. Mater. 44 893 (in Chinese) [周章渝, 王松, 杨发顺, 杨健, 傅兴华 2013 功能材料 44 893]

    [17]

    Bouquet F, Fisher R A, Phillips N E, Hinks D G, Jorgensen J D 2001 Phys. Rev. Lett. 87 180

    [18]

    Kortus J, Mazin I I, Belashchenko K D, Antropov V P, Boyer L L 2001 Phys. Rev. Lett. 86 4656

    [19]

    Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X 2003 Appl. Phys. Lett. 82 2097

    [20]

    Rowell J M, Xu S Y, Zeng X H, Pogrebnyakov A V, Li Q 2003 Appl. Phys. Lett. 83 102

    [21]

    Gross R, Chaudhari P, Dimos D, Gupta A, Koren G 1990 Phys. Rev. Lett. 64 228

    [22]

    Brinkman A, Golubov A A, Rogalla H, Dolgov O V, Kortus J, Kong Y, Jepsen O, Andersen O K 2002 Phys. Rev. B 65 180517

    [23]

    Kleinsasser A W, Miller R E, Mallison W H, Arnold G B 1994 Phys. Rev. Lett. 72 1738

  • [1]

    Likharev K K, Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3

    [2]

    Kameda Y, Yorozu S, Hashimoto Y, Terai H, Fujimaki A, Yoshikawa N 2005 IEEE Trans. Appl. Supercond. 15 423

    [3]

    Mukanov O A, Gupta D, Kadin A M, Semenov V K 2004 Proc. IEEE 92 1564

    [4]

    Mukhanov O A 2011 IEEE Trans. Appl. Supercond. 21 760

    [5]

    Brake H J M T, Wiegerinck G F M 2002 Cryogenics 42 705

    [6]

    Chen W, Rylyakov A V, Patel V, Lukens J E 1999 IEEE Trans. Appl. Supercond. 9 3212

    [7]

    Choi H J, Roundy D, Sun H, Louie S G 2002 Nature 418 758

    [8]

    Chen K, Zhuang C G, Li Q, Weng X, Redwing J M, Xi X X 2011 IEEE Trans. Appl. Supercond. 21 115

    [9]

    Shim H J, Yoon K S, Moodera J S, Hong J P 2007 Appl. Phys. Lett. 90 212509

    [10]

    Singh R K, Gandikota R, Kim J, Newman N, Rowell J M 2006 Appl. Phys. Lett. 89 042512

    [11]

    Kim T H, Moodera J S 2004 Appl. Phys. Lett. 85 434

    [12]

    Cybart S A, Chen K, Cui Y, Li Q, Xi X X, Dynes R C 2006 Appl. Phys. Lett. 88 012509

    [13]

    Ke Y Q, Zhou D F, Liu J, Zen M, Zhu H M, Zhang Y B 2009 Chin. J. Low Temp. Phys. 31 166 (in Chinese) [柯一青, 周迪帆, 刘珏, 曾敏, 朱红妹, 张义邴 2009 低温 31 166]

    [14]

    Xu Z 2014 M. S. Thesis (Lanzhou: University of Lan Zhou) (in Chinese) [许壮 2014 硕士学位论文 (兰州: 兰州大学)]

    [15]

    Zhou Z Y, Wang S, Yang F S, Yang J, Fu X H 2013 Chin. J. Low Temp. Phys. 35 425 (in Chinese) [周章渝, 王松, 杨发顺, 杨健, 傅兴华 2013 低温 35 425]

    [16]

    Zhou Z Y, Wang S, Yang F S, Yang J, Fu X H 2013 J. Funct. Mater. 44 893 (in Chinese) [周章渝, 王松, 杨发顺, 杨健, 傅兴华 2013 功能材料 44 893]

    [17]

    Bouquet F, Fisher R A, Phillips N E, Hinks D G, Jorgensen J D 2001 Phys. Rev. Lett. 87 180

    [18]

    Kortus J, Mazin I I, Belashchenko K D, Antropov V P, Boyer L L 2001 Phys. Rev. Lett. 86 4656

    [19]

    Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X 2003 Appl. Phys. Lett. 82 2097

    [20]

    Rowell J M, Xu S Y, Zeng X H, Pogrebnyakov A V, Li Q 2003 Appl. Phys. Lett. 83 102

    [21]

    Gross R, Chaudhari P, Dimos D, Gupta A, Koren G 1990 Phys. Rev. Lett. 64 228

    [22]

    Brinkman A, Golubov A A, Rogalla H, Dolgov O V, Kortus J, Kong Y, Jepsen O, Andersen O K 2002 Phys. Rev. B 65 180517

    [23]

    Kleinsasser A W, Miller R E, Mallison W H, Arnold G B 1994 Phys. Rev. Lett. 72 1738

  • [1] 果辰, 蔡欣炜, 罗文浩, 黄子耕, 冯庆荣, 甘子钊. 原位电阻测试分析Mg(BH4)2制备MgB2的成相过程.  , 2021, 70(19): 197401. doi: 10.7498/aps.70.20210620
    [2] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用.  , 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [3] 张焱, 王越, 马平, 冯庆荣. 混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究.  , 2014, 63(23): 237401. doi: 10.7498/aps.63.237401
    [4] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系.  , 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [5] 潘杰云, 张辰, 何法, 冯庆荣. MgO(111)衬底MgB2 超薄膜的制备和性质研究.  , 2013, 62(12): 127401. doi: 10.7498/aps.62.127401
    [6] 孙玄, 黄煦, 王亚洲, 冯庆荣. MgB2 超薄膜的制备和性质研究.  , 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [7] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究.  , 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [8] 韩晓琴, 蒋利娟, 刘玉芳. MgB和MgB2(1A1)的结构与解析势能函数.  , 2010, 59(7): 4542-4546. doi: 10.7498/aps.59.4542
    [9] 阮文, 胡强林, 谢安东, 余晓光, 罗文浪, 朱正和. 基态MgB2分子的结构与分析势能函数.  , 2009, 58(12): 8188-8193. doi: 10.7498/aps.58.8188
    [10] 刘亮, 马小柏, 聂瑞娟, 姚丹, 王福仁. Mg/B多层膜退火法中不同制备条件对MgB2超导薄膜性质的影响.  , 2009, 58(11): 7966-7971. doi: 10.7498/aps.58.7966
    [11] 尚学府, 陶向明, 陈文斌, 陈会贤, 王 淼, 谭明秋. MgB2各向异性光学性质的第一性原理研究.  , 2008, 57(9): 5838-5843. doi: 10.7498/aps.57.5838
    [12] 禹争光, 马衍伟, 王栋樑, 张现平, 高召顺, K. Watanabe, 黄伟文. 高性能MgB2长线材制备及性能表征.  , 2007, 56(11): 6680-6684. doi: 10.7498/aps.56.6680
    [13] 余增强, 吴 克, 马小柏, 聂瑞娟, 王福仁. 多层膜外退火方法制备MgB2超导薄膜.  , 2007, 56(1): 512-517. doi: 10.7498/aps.56.512
    [14] 张现平, 马衍伟, 高召顺, 禹争光, K. Watanabe, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响.  , 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [15] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响.  , 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [16] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量.  , 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [17] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜.  , 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [18] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强.  , 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [19] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究.  , 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [20] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究.  , 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
计量
  • 文章访问数:  6341
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-20
  • 修回日期:  2016-06-16
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map