Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new tunable weighting strategy for enhancing performance of network computation

Li Hui-Jia Huang Zhao-Ci Wang Wen-Xuan Xia Cheng-Yi

Citation:

A new tunable weighting strategy for enhancing performance of network computation

Li Hui-Jia, Huang Zhao-Ci, Wang Wen-Xuan, Xia Cheng-Yi
PDF
HTML
Get Citation
  • For many real world systems ranging from biology to engineering, efficient network computation methods have attracted much attention in many applications. Generally, the performance of a network computation can be improved in two ways, i.e., rewiring and weighting. As a matter of fact, many real-world networks where an interpretation of efficient computation is relevant are weighted and directed. Thus, one can argue that nature might have assigned the optimal structure and weights to adjust the level of functionality. Indeed, in many neural and biochemical networks there is evidence that the synchronized and coordinated behavior may play important roles in the system’s functionality. The importance of the network weighting is not limited to the nature. In computer networks, for example, designing appropriate weights and directions for the connection links may enhance the ability of the network to synchronize the processes, thus leading the performance of computation to improve. In this paper, we propose a new two-mode weighting strategy by employing the network topological centralities including the degree, betweenness, closeness and communication neighbor graph. The weighting strategy consists of two modes, i.e., the original mode, in which the synchronizability is enhanced by increasing the weight of bridge edges, and the inverse version, in which the performance of community detection is improved by reducing the weight of bridge edges. We control the weight strategy by simply tuning a single parameter, which can be easily performed in the real world systems. We test the effectiveness of our model in a number of artificial benchmark networks as well as real-world networks. To the best of our knowledge, the proposed weighting strategy outperforms previously published weighting methods of improving the performance of network computation.
      Corresponding author: Li Hui-Jia, hjli@bupt.edu.cn
    • Funds: Project supported by Fundamental Research Funds for the Central Universities of China (Grant No. 2020XD-A01-2) and the National Natural Science Foundation of China (Grant No. 71871233)
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Han Y, Zhu L, Cheng Z, Li J, Liu X 2020 IEEE Trans. Cybern. 50 1697Google Scholar

    [4]

    杨博, 刘大有, 刘继明, 金弟, 马海宾 2009 软件学报 20 54Google Scholar

    Yang B, Liu D Y, Liu J M, Jin D, Ma H B 2009 J. Software 20 54Google Scholar

    [5]

    Ding S, Yue Z, Yang S, Niu F, Zhang Y 2020 IEEE Trans. Ind. Inf. 32 2101Google Scholar

    [6]

    Liang W, Li K, Long J, Kui X, Zomaya A Y 2020 IEEE Trans. Ind. Inf. 16 2063Google Scholar

    [7]

    Lu M, Zhang Z, Qu Z, Kang Y 2019 IEEE Trans. Knowl. Data Eng. 31 1736Google Scholar

    [8]

    Ma X, Dong D, Wang Q 2019 IEEE Trans. Knowl. Data Eng. 31 273Google Scholar

    [9]

    Newman M E J, Girvan M 2004 Phys. Rev. E 69 026113Google Scholar

    [10]

    Clauset A, Newman M E J 2004 Phys. Rev. E 70 066111Google Scholar

    [11]

    Du W B, Zhou X L, Lordan O, Wang Z, Zhao C, Zhu Y B 2016 Transp. Res. Pt. E-Logist. Transp. Rev. 89 108Google Scholar

    [12]

    Zeng X, Wang W, Chen C, Yen G G 2020 IEEE Trans. Cybern. 50 2502Google Scholar

    [13]

    Palla G, Derenyi I, Farkas I, Vicsek T 2005 Nature 435 814Google Scholar

    [14]

    Li J, Wang X, Cui Y 2014 Physica A 415 398Google Scholar

    [15]

    李慧嘉, 李慧颖, 李爱华 2015 计算机学报 38 301Google Scholar

    Li H J, Li H Y, Li A H 2015 Chin. J. Comput. 38 301Google Scholar

    [16]

    Hofman J M, Wiggins C H 2008 Phys. Rev. Lett. 100 258701Google Scholar

    [17]

    Boccaletti S, Ivanchenko M, LatoraV, Pluchino A 2007 Phys. Rev. E 75 045102Google Scholar

    [18]

    Xu Y, Wu X, Li N, Liu L, Xie C, Li C 2019 IEEE Trans. Circuits Syst. Express Brief 67 700Google Scholar

    [19]

    Han M, Zhang M, Qiu T, Xu M 2019 IEEE Trans. Neural Networks Learn. Syst. 30 255Google Scholar

    [20]

    Hong H, Kim B J, Choi M Y, Park H 2004 Phys. Rev. E 69 067105Google Scholar

    [21]

    Chavez M, Hwang D U, Amann A, Hentschel H E, Boccaletti S 2005 Phys. Rev. Lett. 94 218701Google Scholar

    [22]

    Wang X, Lai Y C, Lai C H 2007 Phys. Rev. E 75 056205Google Scholar

    [23]

    Jalili M, Rad A A, Hasler M 2008 Phys. Rev. E 78 016105Google Scholar

    [24]

    Rad A A, Jalili M, Hasler M 2008 Chaos 18 037104Google Scholar

    [25]

    Lu X, Kuzmin K, Chen M, Szymanski B K 2018 Inf. Sci. 424 55Google Scholar

    [26]

    Zhang Y, Wang M, Gottwalt F, Saberi M, Chang E 2019 J. Informetr. 13 616Google Scholar

    [27]

    De Meo P, Ferrara E, Fiumara G, Provetti A 2013 J. Informetr. 222 648Google Scholar

    [28]

    Yang R, Wang W X, Lai Y C, Chen G 2009 Phys. Rev. E 79 026112Google Scholar

    [29]

    Li H J, Daniels J J 2015 Phys. Rev. E 91 012801Google Scholar

    [30]

    Meyniel F, Dehaene S 2017 PNAS 114 3859Google Scholar

    [31]

    Khadivi A, Ajdari R A, Hasler M 2011 Phys. Rev. E 83 046104Google Scholar

    [32]

    Fortunato S, Barthelemy M 2007 PNAS 104 36Google Scholar

    [33]

    Good B H, de Montjoye Y A, Clauset A 2010 Phys. Rev. E 81 046106Google Scholar

    [34]

    Newman M E J 2002 Comput. Phys. Commun. 147 40Google Scholar

    [35]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [36]

    LuL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [37]

    Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E 2007 PNAS 104 11150Google Scholar

    [38]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [39]

    Motter A E, Zhou C, Kurths J 2005 Phys. Rev. E 71 016116Google Scholar

    [40]

    Motter A E, Zhou C, Kurths J 2005 EPL 69 334Google Scholar

    [41]

    Nishikawa T, Motter A E 2006 Phys. Rev. E 73 065106Google Scholar

    [42]

    Gerschgorin S 1931 Izv. Akad. Nauk USSR Otd. Fiz.-Mat. Nauk 7 749

    [43]

    Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D 2004 PNAS 101 2658Google Scholar

    [44]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 4 7241Google Scholar

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Sci. Sin. Math 4 7241Google Scholar

    [45]

    Li H J, Wang Y, Wu L Y, Zhang J, Zhang X S 2012 Phys. Rev. E 86 016109Google Scholar

    [46]

    Li H J, Zhang X S 2013 EPL 103 58002Google Scholar

    [47]

    Lancichinetti A, Fortunato S, Radicchi F 2008 Phys. Rev. E 78 046110Google Scholar

    [48]

    Guimera R, Nunes Amaral L A 2005 Nature 433 895Google Scholar

    [49]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [50]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [51]

    Knuth D E 1994 The Stanford Graph Base: A Platform for Combinatorial Computing (New York: ACM Press) p592

    [52]

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [53]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [54]

    Gleiser P, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [55]

    Boguna M, Pastor-Satorras R, Diaz-Guilera A, Arenas A 2004 Phys. Rev. E 70 056122Google Scholar

    [56]

    Agarwal G, Kempe D 2008 Eur. Phys. J. B 66 409Google Scholar

    [57]

    Xing N, Zong Q, Dou L, Tian B, Wang Q 2019 IEEE Trans. Veh. Technol. 68 9963Google Scholar

    [58]

    Yang H, Yao Q, Yu A, Lee Y, Zhang J 2019 IEEE Trans. Commun. 67 3457Google Scholar

  • 图 1  (a)节点4和节点5之间边对应的通讯邻域图; (b)网络中的桥边

    Figure 1.  (a) Communication neighborhood graph corresponding to the edge between node 4 and node 5; (b) bridge side in the network.

    图 2  参数α取不同值时BA模型中节点强度s和节点度k之间的关系(N = 5000) (a) $ \alpha =2 $; (b) $ \alpha =6 $

    Figure 2.  Relationship between node strength s and node degree k in BA model (N = 5000) with different values of parameter α: (a) $ \alpha =2 $; (b) $ \alpha =6 $.

    图 3  应用加权机制后网络的动态演化示例图

    Figure 3.  Example of dynamic evolution of network after applying weighting mechanism.

    图 4  (a) 无标度网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, $ \left\langle k \right\rangle $)的对应关系(N = 500, $ \beta =0 $); (b)无标度网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, $ \beta $)的对应关系(N = 500, $ \left\langle k \right\rangle =4 $)

    Figure 4.  (a) Corresponding relationship (N = 500, $ \beta =0 $) in scale-free networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, $ \left\langle k \right\rangle $); (b) Corresponding relationship (N = 500, $ \left\langle k \right\rangle =4 $) in scale-free networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, $ \beta $).

    图 5  (a) Watts-Strogatz网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, $ \left\langle k \right\rangle $)的对应关系(N = 500, P = 0.1); (b) Watts-Strogatz网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, P)的对应关系(N = 500, $ \left\langle k \right\rangle =4 $)

    Figure 5.  (a) Corresponding relationship (N = 500, P = 0.1) in Watts-Strogatz networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, $ \left\langle k \right\rangle $); (b) corresponding relationship (N = 500, $ \left\langle k \right\rangle =4 $) in Watts-Strogatz networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, P).

    图 6  (a) GN基准网络中使用加权机制(逆加权机制)前后平均比率R的对比; (b) LFR基准网络中使用加权机制(逆加权机制)前后平均比率R的对比

    Figure 6.  (a) Comparison of average ratio R before and after using weighting mechanism (inverse weighting mechanism) in GN benchmark network; (b) comparison of average ratio R before and after using weighting mechanism (inverse weighting mechanism) in LFR benchmark network.

    图 7  在LFR网络中运用加权机制(逆加权机制), 当取不同的$ \alpha $值时, 利用(a) SA算法和(b) DA算法后NMI的计算值

    Figure 7.  Weighted mechanism (inverse weighted mechanism) is used in LFR network. When the $ \alpha $ value is different, the NMI value is calculated by using (a) SA algorithm and (b) DA algorithm.

    图 8  在LFR网络中运用加权机制(逆加权机制), 当$ \alpha =4 $($ \alpha =-4 $)并考虑聚类规模时, 利用(a) SA算法和(b) DA算法后NMI的计算值

    Figure 8.  The weighted mechanism (inverse weighted mechanism) is used in LFR network. When α = 4 (α = –4) and considering the cluster size, the NMI calculated by (a) SA algorithm and (b) DA algorithm.

    表 1  在现实世界网络中使用8种不同加权策略的实验结果对比, 其中RW代表随机游走方法, SA代表模拟退火方法, VB代表变分贝叶斯方法, PL代表概率推断方法

    Table 1.  Comparison of experimental results using eight different weighting strategies in real world networks, in which RW represents random walk method, SA stands for simulated annealing method, VB stands for variational Bayesian method, PL stands for probability inference method.

    现实世界网络 N $ \left\langle k \right\rangle $ $ {\lambda }_{N}/{\lambda }_{2} $
    Chavez Wang Jalili Khadivi RW SA VB PL This work
    蛋白质结构网络2 53 4.64 20.92 20.54 6.06 5.83 5.61 4.87 4.43 4.59 4.27
    海豚网络 62 5.12 16.89 43.01 6.83 6.22 6.04 5.33 5.07 5.30 4.95
    蛋白质结构网络1 95 4.48 63.1 262.2 23.5 19.82 15.71 13.65 10.59 11.88 8.45
    蛋白质结构网络3 99 4.37 43.75 299.85 13.07 10.84 10.27 9.87 9.14 9.00 8.02
    中国航空网络 203 18.48 13.25 5.79 3.29 2.88 2.23 2.08 1.83 1.76 1.55
    电子邮件通讯 1133 9.62 8.63 5.81 5.40 4.04 3.86 3.91 3.84 3.54 3.77
    酵母蛋白质交互作用 1458 2.67 52.44 269.07 25.60 17.63 15.61 13.21 10.76 12.66 9.52
    蛋白质交互作用 2840 2.92 34.87 41.60 16.50 13.85 11.48 10.47 8.94 9.87 5.50
    中国电力网络 865 5.20 49.77 133.8 25.43 20.90 23.44 15.19 12.04 10.56 5.04
    科学家合作网络 4380 3.25 68.31 273.14 38.69 25.87 20.02 17.36 10.42 11.77 7.21
    因特网AS2 7690 4.00 12.90 3.26 2.94 2.15 2.04 2.10 1.91 1.59 1.88
    因特网AS5 8063 4.10 12.88 3.41 3.37 2.56 2.27 2.09 1.97 2.20 1.83
    DownLoad: CSV

    表 2  在不同现实网络使用加权策略得到的实验结果, 其中“/”左右表示加权后和加权前的模块度Q

    Table 2.  Experimental results are obtained by using weighting strategy in different real networks, where /’s left or right represents the modularity Q value after or before weighting.

    网络 文献 最优Q SA[48] DA[49] CNM[10]
    中国航空网络 [11] 0.644/0.525 0.589/0.428 0.577/0.483
    空手道俱乐部 [50] 0.420 0.416/0.342 0.411/0.351 0.413/0.376
    《悲惨世界》 [51] 0.561 0.554/0.389 0.539/0.406 0.531/0.395
    海豚社会网络 [52] 0.531 0.527/0.375 0.521/0.362 0.517/0.356
    电子邮件 [53] 0.579 0.568/0.462 0.543/0.436 0.538/0.444
    爵士乐 [54] 0.446 0.439/0.333 0.437/0.341 0.431/0.328
    PGP密钥签名 [55] 0.878 0.883/0.674 0.843/0.705 0.872/0.754
    DownLoad: CSV

    表 3  在现实世界网络中使用不同加权策略的实验结果对比, 这里网络聚类算法利用CNM算法, 其中RW代表随机游走方法, SA代表模拟退火方法, VB代表变分贝叶斯方法, PL代表概率推断方法

    Table 3.  Comparison of experimental results using different weighting strategies in the real world network. CNM algorithm is used as the network clustering algorithm, in which RW represents the random walk method, SA represents the simulated annealing method, VB represents the variable dB method, and PL represents the probability inference method.

    网络 Chavez Wang Jalili Khadivi RW SA VB PL This work
    空手道俱乐部 0.316 0.322 0.351 0.362 0.374 0.381 0.390 0.386 0.413
    中国航空网络 0.449 0.478 0.423 0.432 0.506 0.543 0.564 0.578 0.603
    《悲惨世界》 0.357 0.369 0.399 0.411 0.439 0.457 0.488 0.433 0.531
    爵士乐 0.338 0.347 0.353 0.361 0.383 0.399 0.42 0.387 0.431
    PGP密钥签名 0.583 0.678 0.676 0.715 0.744 0.786 0.839 0.820 0.872
    海豚社会网络 0.357 0.381 0.371 0.374 0.406 0.444 0.483 0.500 0.517
    电子邮件 0.368 0.409 0.431 0.443 0.471 0.499 0.503 0.495 0.538
    DownLoad: CSV
    Baidu
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Han Y, Zhu L, Cheng Z, Li J, Liu X 2020 IEEE Trans. Cybern. 50 1697Google Scholar

    [4]

    杨博, 刘大有, 刘继明, 金弟, 马海宾 2009 软件学报 20 54Google Scholar

    Yang B, Liu D Y, Liu J M, Jin D, Ma H B 2009 J. Software 20 54Google Scholar

    [5]

    Ding S, Yue Z, Yang S, Niu F, Zhang Y 2020 IEEE Trans. Ind. Inf. 32 2101Google Scholar

    [6]

    Liang W, Li K, Long J, Kui X, Zomaya A Y 2020 IEEE Trans. Ind. Inf. 16 2063Google Scholar

    [7]

    Lu M, Zhang Z, Qu Z, Kang Y 2019 IEEE Trans. Knowl. Data Eng. 31 1736Google Scholar

    [8]

    Ma X, Dong D, Wang Q 2019 IEEE Trans. Knowl. Data Eng. 31 273Google Scholar

    [9]

    Newman M E J, Girvan M 2004 Phys. Rev. E 69 026113Google Scholar

    [10]

    Clauset A, Newman M E J 2004 Phys. Rev. E 70 066111Google Scholar

    [11]

    Du W B, Zhou X L, Lordan O, Wang Z, Zhao C, Zhu Y B 2016 Transp. Res. Pt. E-Logist. Transp. Rev. 89 108Google Scholar

    [12]

    Zeng X, Wang W, Chen C, Yen G G 2020 IEEE Trans. Cybern. 50 2502Google Scholar

    [13]

    Palla G, Derenyi I, Farkas I, Vicsek T 2005 Nature 435 814Google Scholar

    [14]

    Li J, Wang X, Cui Y 2014 Physica A 415 398Google Scholar

    [15]

    李慧嘉, 李慧颖, 李爱华 2015 计算机学报 38 301Google Scholar

    Li H J, Li H Y, Li A H 2015 Chin. J. Comput. 38 301Google Scholar

    [16]

    Hofman J M, Wiggins C H 2008 Phys. Rev. Lett. 100 258701Google Scholar

    [17]

    Boccaletti S, Ivanchenko M, LatoraV, Pluchino A 2007 Phys. Rev. E 75 045102Google Scholar

    [18]

    Xu Y, Wu X, Li N, Liu L, Xie C, Li C 2019 IEEE Trans. Circuits Syst. Express Brief 67 700Google Scholar

    [19]

    Han M, Zhang M, Qiu T, Xu M 2019 IEEE Trans. Neural Networks Learn. Syst. 30 255Google Scholar

    [20]

    Hong H, Kim B J, Choi M Y, Park H 2004 Phys. Rev. E 69 067105Google Scholar

    [21]

    Chavez M, Hwang D U, Amann A, Hentschel H E, Boccaletti S 2005 Phys. Rev. Lett. 94 218701Google Scholar

    [22]

    Wang X, Lai Y C, Lai C H 2007 Phys. Rev. E 75 056205Google Scholar

    [23]

    Jalili M, Rad A A, Hasler M 2008 Phys. Rev. E 78 016105Google Scholar

    [24]

    Rad A A, Jalili M, Hasler M 2008 Chaos 18 037104Google Scholar

    [25]

    Lu X, Kuzmin K, Chen M, Szymanski B K 2018 Inf. Sci. 424 55Google Scholar

    [26]

    Zhang Y, Wang M, Gottwalt F, Saberi M, Chang E 2019 J. Informetr. 13 616Google Scholar

    [27]

    De Meo P, Ferrara E, Fiumara G, Provetti A 2013 J. Informetr. 222 648Google Scholar

    [28]

    Yang R, Wang W X, Lai Y C, Chen G 2009 Phys. Rev. E 79 026112Google Scholar

    [29]

    Li H J, Daniels J J 2015 Phys. Rev. E 91 012801Google Scholar

    [30]

    Meyniel F, Dehaene S 2017 PNAS 114 3859Google Scholar

    [31]

    Khadivi A, Ajdari R A, Hasler M 2011 Phys. Rev. E 83 046104Google Scholar

    [32]

    Fortunato S, Barthelemy M 2007 PNAS 104 36Google Scholar

    [33]

    Good B H, de Montjoye Y A, Clauset A 2010 Phys. Rev. E 81 046106Google Scholar

    [34]

    Newman M E J 2002 Comput. Phys. Commun. 147 40Google Scholar

    [35]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [36]

    LuL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [37]

    Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E 2007 PNAS 104 11150Google Scholar

    [38]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [39]

    Motter A E, Zhou C, Kurths J 2005 Phys. Rev. E 71 016116Google Scholar

    [40]

    Motter A E, Zhou C, Kurths J 2005 EPL 69 334Google Scholar

    [41]

    Nishikawa T, Motter A E 2006 Phys. Rev. E 73 065106Google Scholar

    [42]

    Gerschgorin S 1931 Izv. Akad. Nauk USSR Otd. Fiz.-Mat. Nauk 7 749

    [43]

    Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D 2004 PNAS 101 2658Google Scholar

    [44]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 4 7241Google Scholar

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Sci. Sin. Math 4 7241Google Scholar

    [45]

    Li H J, Wang Y, Wu L Y, Zhang J, Zhang X S 2012 Phys. Rev. E 86 016109Google Scholar

    [46]

    Li H J, Zhang X S 2013 EPL 103 58002Google Scholar

    [47]

    Lancichinetti A, Fortunato S, Radicchi F 2008 Phys. Rev. E 78 046110Google Scholar

    [48]

    Guimera R, Nunes Amaral L A 2005 Nature 433 895Google Scholar

    [49]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [50]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [51]

    Knuth D E 1994 The Stanford Graph Base: A Platform for Combinatorial Computing (New York: ACM Press) p592

    [52]

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [53]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [54]

    Gleiser P, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [55]

    Boguna M, Pastor-Satorras R, Diaz-Guilera A, Arenas A 2004 Phys. Rev. E 70 056122Google Scholar

    [56]

    Agarwal G, Kempe D 2008 Eur. Phys. J. B 66 409Google Scholar

    [57]

    Xing N, Zong Q, Dou L, Tian B, Wang Q 2019 IEEE Trans. Veh. Technol. 68 9963Google Scholar

    [58]

    Yang H, Yao Q, Yu A, Lee Y, Zhang J 2019 IEEE Trans. Commun. 67 3457Google Scholar

  • [1] Ma Jin-Long, Zhang Jun-Feng, Zhang Dong-Wen, Zhang Hong-Bin. Quantifying complex network traffic capacity based on communicability sequence entropy. Acta Physica Sinica, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [2] Chen Dan, Shi Dan-Dan, Pan Gui-Jun. Correlation between the electrical transport performance and the communicability sequence entropy in complex networks. Acta Physica Sinica, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [3] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [4] Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [5] Su Xiao-Ping, Song Yu-Rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks. Acta Physica Sinica, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [6] Yuan Ming. A cascading failure model of complex network with hierarchy structure. Acta Physica Sinica, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [7] Liu Wei-Yan, Liu Bin. Congestion control in complex network based on local routing strategy. Acta Physica Sinica, 2014, 63(24): 248901. doi: 10.7498/aps.63.248901
    [8] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [9] Yang Pu, Zheng Zhi-Gang. Analysis the convergency speed of estimating the network topology based on the dynamical synchronization. Acta Physica Sinica, 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [10] Zhang Cong, Shen Hui-Zhang, Li Feng, Yang He-Qun. Multi-resolution density modularity for finding community structure in complex networks. Acta Physica Sinica, 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [11] Liu Shuang, Lü Ling, Li Gang. Sliding mode tracking synchronization of an uncertain complex network. Acta Physica Sinica, 2012, 61(16): 160507. doi: 10.7498/aps.61.160507
    [12] Liu Gang, Li Yong-Shu. Routing strategy for complex networks based on gravitation field theory. Acta Physica Sinica, 2012, 61(24): 248901. doi: 10.7498/aps.61.248901
    [13] LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [14] Lü Tian-Yang, Xie Wen-Yan, Zheng Wei-Min, Piao Xiu-Feng. Analysis of community evaluation criterion and discovery algorithm of weighted complex network. Acta Physica Sinica, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [15] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [16] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [17] Li Tao, Pei Wen-Jiang, Wang Shao-Ping. Optimal traffic routing strategy on scale-free complex networks. Acta Physica Sinica, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [18] Chen Hua-Liang, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Research on one weighted routing strategy for complex networks. Acta Physica Sinica, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [19] Gao Zhong-Ke, Jin Ning-De. Complex network community structure of two-phase flow pattern and its statistical characteristics. Acta Physica Sinica, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [20] Lin Hai, Wu Chen-Xu. Evolution of strategies based on genetic algorithm in the iterated prisoner’s dilemma on complex networks. Acta Physica Sinica, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
Metrics
  • Abstract views:  4326
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2021
  • Accepted Date:  02 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回
Baidu
map