-
Laser pumped terahertz (THz) wave up-conversion detection with high sensitivity, fast responsivity and wide frequency band is achieved at room temperature, based on home-made organic nonlinear crystals 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST). Green laser pulses pumped KTiOPO4 optical parametric oscillators are utilized as the sources of dual-wavelength near-infrared (NIR) beams (1.3–1.6 μm, for THz-wave difference frequency generation (DFG)) and a single NIR beam (1.2–1.4 μm, for up-conversion detection). The nonlinear medium for both THz-DFG and detection is DAST (grown by CETC-46). A nanosecond-time-resolved THz pulse is obtained with an InGaAs p-i-n photo-diode. The spectrum of the up-converted NIR light is acquired, which allows us to measure the THz frequency indirectly. The sensitivity (also at room temperature) is 4 orders better at 19 THz than the sensitivity of a commercial thermal detector (Golay Cell). The wide frequency band operation is realized with different sets of band-pass filters, which cover the entire range from 3.15 to 29.82 THz except 8.4 THz of the strong absorption peak of DAST. The dynamic range of a THz source based on DFG can be commonly improved by 2–3 orders, by changing the traditional thermal detector with the up-conversion detection. The presented technology can promote the applications of DFG THz source in the fields of high-resolution spectroscopy and imaging.
-
Keywords:
- terahertz-wave detection /
- nonlinear optics /
- organic nonlinear crystal /
- frequency up-conversion
[1] 张存林 2008 太赫兹感测与成像 (北京: 国防工业出版社) 第1−5页
Zhang C 2008 Terahertz Sensing and Imaging (Beijing: National Defense Industry Press) pp1−5 (in Chinese)
[2] Liu Z Y, Qi F, Wang Y L, Liu P X, Li W F 2019 J. Infrared Milli. Terahz. Waves 40 606Google Scholar
[3] Li Y F, Zhang Y T, Li T T, Li M Y, Chen Z L, Li Q Y, Zhao H L, Sheng Q, Shi W, Yao J Q 2020 Nano Lett. 20 5646Google Scholar
[4] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 64 114206Google Scholar
Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar
[5] Liu P X, Qi F, Li W F, Liu Z Y, Wang Y L, Shi W, Yao J Q 2018 J. Infrared Milli. Terahz. Waves 39 1005Google Scholar
[6] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 65 070702Google Scholar
Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar
[7] Shi W, Ding Y J, Fernelius N, Hopkins F K 2006 Appl. Phys. Lett. 88 101101Google Scholar
[8] Ding Y J, Shi W 2006 Sol. State Electron. 50 1128Google Scholar
[9] Ding Y J, Shi W 2006 Opt. Express 14 8311Google Scholar
[10] Khan M J, Chen J C, Liau Z L, Kaushik S 2011 IEEE J. Sel. Top. Quantum Electron. 17 79Google Scholar
[11] Guo R, Ikari T, Minamide H, Ito H 2008 Appl. Phys. Lett. 93 021106Google Scholar
[12] Minamide H, Zhang J, Guo R, Miyamoto K, Ohno S, Ito H 2010 Appl. Phys. Lett. 97 121106Google Scholar
[13] Minamide H, Hayashi S, Nawata K, Taira T, Shikata J, Kawase K 2014 J. Infrared Milli. Terahz. Waves 35 25Google Scholar
[14] Kato M, Tripathi S R, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6425Google Scholar
[15] Tripathi S R, Sugiyama Y, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6433Google Scholar
[16] Takida Y, Nawata K, Suzuki S, Asada M, Minamide H 2017 Opt. Express 25 5389Google Scholar
[17] Qi F, Nawata K, Hayashi S, Notake T, Matsukawa T, Minamide H 2014 Appl. Phys. Lett. 104 031110Google Scholar
[18] Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Opt. Lett. 39 1294Google Scholar
[19] Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Laser Phys. Lett. 11 085403Google Scholar
[20] Fan S, Qi F, Notake T, Nawata K, Takida Y, Matsukawa T, Minamide H 2015 Opt. Express 23 7611Google Scholar
[21] Jiang C Y, Liu J S, Sun B, Wang K J, Yao J Q 2010 J. Opt. 12 045202Google Scholar
[22] Jiang C Y, Liu J S, Sun B, Wang K J, Li S X, Yao J Q 2010 Opt. Express 18 18180Google Scholar
[23] 蒋呈阅 2013 博士学位论文 (武汉: 华中科技大学)
Jiang C Y 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[24] 武聪, 孟大磊, 庞子博, 徐永宽, 程红娟 2017 压电与声光 39 722Google Scholar
Wu C, Meng D L, Pang Z B, Xu Y K, Cheng H J 2017 Piezoelectrics & Acoustooptics 39 722Google Scholar
[25] Cunningham P D, Hayden L M 2010 Opt. Express 18 23621
[26] Takahashi Y, Adachi H, Tanuichi T, Takagi M, Hosokawa Y, Onzuka S, Brahadeeswaran S, Yoshimura M, Mori Y, Masuhara H, Sasaki T, Nakanishi H 2006 J. Photochem. Photobiol., A 183 247Google Scholar
[27] Ito H, Suizu K, Yamashita T, Nawahara A, Sato T 2007 Jpn. J. Appl. Phys. 46 7321Google Scholar
[28] Liu P X, Qi F, Pang Z B, Li W F, Lai Z P 2018 J. Phys. D: Appl. Phys. 51 395102Google Scholar
[29] Bosshard Ch, Spreiter R, Degiorgi L, Gunter P 2002 Phys. Rev. B 66 205107Google Scholar
-
-
[1] 张存林 2008 太赫兹感测与成像 (北京: 国防工业出版社) 第1−5页
Zhang C 2008 Terahertz Sensing and Imaging (Beijing: National Defense Industry Press) pp1−5 (in Chinese)
[2] Liu Z Y, Qi F, Wang Y L, Liu P X, Li W F 2019 J. Infrared Milli. Terahz. Waves 40 606Google Scholar
[3] Li Y F, Zhang Y T, Li T T, Li M Y, Chen Z L, Li Q Y, Zhao H L, Sheng Q, Shi W, Yao J Q 2020 Nano Lett. 20 5646Google Scholar
[4] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 64 114206Google Scholar
Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar
[5] Liu P X, Qi F, Li W F, Liu Z Y, Wang Y L, Shi W, Yao J Q 2018 J. Infrared Milli. Terahz. Waves 39 1005Google Scholar
[6] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 65 070702Google Scholar
Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar
[7] Shi W, Ding Y J, Fernelius N, Hopkins F K 2006 Appl. Phys. Lett. 88 101101Google Scholar
[8] Ding Y J, Shi W 2006 Sol. State Electron. 50 1128Google Scholar
[9] Ding Y J, Shi W 2006 Opt. Express 14 8311Google Scholar
[10] Khan M J, Chen J C, Liau Z L, Kaushik S 2011 IEEE J. Sel. Top. Quantum Electron. 17 79Google Scholar
[11] Guo R, Ikari T, Minamide H, Ito H 2008 Appl. Phys. Lett. 93 021106Google Scholar
[12] Minamide H, Zhang J, Guo R, Miyamoto K, Ohno S, Ito H 2010 Appl. Phys. Lett. 97 121106Google Scholar
[13] Minamide H, Hayashi S, Nawata K, Taira T, Shikata J, Kawase K 2014 J. Infrared Milli. Terahz. Waves 35 25Google Scholar
[14] Kato M, Tripathi S R, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6425Google Scholar
[15] Tripathi S R, Sugiyama Y, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6433Google Scholar
[16] Takida Y, Nawata K, Suzuki S, Asada M, Minamide H 2017 Opt. Express 25 5389Google Scholar
[17] Qi F, Nawata K, Hayashi S, Notake T, Matsukawa T, Minamide H 2014 Appl. Phys. Lett. 104 031110Google Scholar
[18] Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Opt. Lett. 39 1294Google Scholar
[19] Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Laser Phys. Lett. 11 085403Google Scholar
[20] Fan S, Qi F, Notake T, Nawata K, Takida Y, Matsukawa T, Minamide H 2015 Opt. Express 23 7611Google Scholar
[21] Jiang C Y, Liu J S, Sun B, Wang K J, Yao J Q 2010 J. Opt. 12 045202Google Scholar
[22] Jiang C Y, Liu J S, Sun B, Wang K J, Li S X, Yao J Q 2010 Opt. Express 18 18180Google Scholar
[23] 蒋呈阅 2013 博士学位论文 (武汉: 华中科技大学)
Jiang C Y 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[24] 武聪, 孟大磊, 庞子博, 徐永宽, 程红娟 2017 压电与声光 39 722Google Scholar
Wu C, Meng D L, Pang Z B, Xu Y K, Cheng H J 2017 Piezoelectrics & Acoustooptics 39 722Google Scholar
[25] Cunningham P D, Hayden L M 2010 Opt. Express 18 23621
[26] Takahashi Y, Adachi H, Tanuichi T, Takagi M, Hosokawa Y, Onzuka S, Brahadeeswaran S, Yoshimura M, Mori Y, Masuhara H, Sasaki T, Nakanishi H 2006 J. Photochem. Photobiol., A 183 247Google Scholar
[27] Ito H, Suizu K, Yamashita T, Nawahara A, Sato T 2007 Jpn. J. Appl. Phys. 46 7321Google Scholar
[28] Liu P X, Qi F, Pang Z B, Li W F, Lai Z P 2018 J. Phys. D: Appl. Phys. 51 395102Google Scholar
[29] Bosshard Ch, Spreiter R, Degiorgi L, Gunter P 2002 Phys. Rev. B 66 205107Google Scholar
Catalog
Metrics
- Abstract views: 6661
- PDF Downloads: 199
- Cited By: 0