-
In order to accurately analyze the broadband pulsed amplification performances of the domestic picosecond petawatt laser system, which uses large aperture N31 or N41 neodymium glass as gain medium, the broadband pulsed amplification model is improved by introducing the actual stimulated emission cross section (SECS) of neodymium glass. Comparing with the SECS under Gaussian approximation, the amplified pulsed spectrum gain narrowing effect with different SECSs are analyzed. It is found that in the actual SECS of N31 neodymium glass laser, the gain-narrowing effect is enhanced, the output energy decreases, gain’s saturation effect weakens, system’s accumulated B integral augments, but the laser system turns insensitive to the center wavelength simultaneously. Based on the Shenguang II high energy picosecond petawatt laser system which uses N31 neodymium glass, the spectral shape, center wavelength, and energy stability of amplified output pulse are simulated by using different SECSs. It is shown that the super-Gaussian spectral shape narrows more greatly than Gaussian spectral shape, the spectrum bandwidth narrows from 10 to about 3 nm with gain larger than 107, and the accumulated B integral increases to 1.7. Additionally, the gain-narrowing effect makes the output spectrum (with 1054 nm of center wavelength) less affected by changing the inputted center wavelength from 1052 to 1056 nm, and the gain saturation effect can improve output energy stability to less than 2% (root mean square (RMS)) with about 3% (RMS) inputted energy stability, which are beneficial to the subsequent pulse compression and physical experiment. Based on the above analysis, a broadband pulsed amplified experiment is conducted by using Shenguang II petawatt laser system, the injected seed is about 10 nm (full width at half maximum (FWHM)) with 5 order super Gaussian shape at 1054-nm center wavelength, and 1.2 mJ with 3% (RMS) energy stability from optical parametric chirped pulse amplification. The amplified pulse with 1900 J at 1054.2 nm (3 nm FWHM) and stability < 2% (shot to shot) is achieved, and the spectral shapes and bandwidths after bar and disk amplifiers are measured, which are consistent with theoretical analysis results. The results can provide a necessary reference for constructing high energy broadband laser system and improving its performances in the future.
-
Keywords:
- high energy broadband laser /
- picosecond petawatt laser system /
- neodymium glass /
- stimulated emission cross section /
- gain narrowing
[1] Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar
[2] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[3] Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar
[4] Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9Google Scholar
[5] Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar
[6] Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211Google Scholar
[7] Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003Google Scholar
[8] Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6Google Scholar
[9] Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933
[10] Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87
[11] Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281Google Scholar
[12] Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172
[13] Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar
[14] Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198
[15] 李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 57 4898Google Scholar
Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898Google Scholar
[16] 赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 58 3977Google Scholar
Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977Google Scholar
[17] 张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar
Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767Google Scholar
[18] Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270Google Scholar
[19] Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348Google Scholar
[20] 卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059Google Scholar
Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059Google Scholar
[21] 管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005Google Scholar
Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005Google Scholar
[22] 杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)
Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)
[23] Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258Google Scholar
[24] 刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718Google Scholar
Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718Google Scholar
[25] Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248
[26] He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1
-
图 2 小信号增益下, 10 nm (FWHM)高斯型光谱注入时, 不同SECS下增益窄化分析结果的对比 (a) 10 nm (FWHM)高斯光谱注入; (b) 高斯SECS和实际SECS下光谱窄化分析结果对比
Figure 2. In small-signal-gain regime and input of 10 nm (FWHM) Gaussian spectrum, the compared results of gain narrowing by different SECSs: (a) Input of 10 nm(FWHM) Gaussian spectrum; (b) the results of gain narrowing by Gaussian SECS and real SECS.
图 3 采用不同SECS时, 增益窄化对输出光谱宽度影响的对比分析 (a) 10 nm(FWHM), 5阶超高斯注入光谱; (b)采用高斯SECS和实际SECS时, 光谱窄化分析结果对比
Figure 3. The influence results of gain narrowing to spectrum bandwidth by different SECSs: (a) Input of 10 nm (FWHM), 5-order super-Gaussian spectrum; (b) the compared gain narrowing results between Gaussian SECS and real SECS.
图 5 不同SECS下, 注入种子中心波长变化对放大光谱特性的影响, 其他参数与图4(c)相同 (a) 不同中心波长的注入光谱; (b) 高斯SECS下的放大光谱; (c) 实际SECS下的放大光谱
Figure 5. The influences of different inputted center wavelength spectrums to amplified spectrum by different SECSs: (a) Input spectrums of different center wavelength; the amplified spectrums by Gaussian SECS (b) and real SECS (c).
图 8 10 nm(FWHM), 5阶超高斯光谱注入, 输出1866 J时, 棒放和片放位置的实验数据与图4理论分析结果的对比 (a) 输入光谱实验及拟合数据; 棒放(b)和片放(c)位置光谱对比
Figure 8. The compared results between experiment and simulation results after bar and disk amplifiers: (a) The compared input spectrums of experiment and simulation; the compared spectrum results after rob amplifier (b) and disk amplifier (c).
表 1 注入1.2 mJ, 5 ns, 10 nm宽带种子, 不同SECS下, 棒放和片放输出位置主要参数分析结果对比.
Table 1. Input a 1.2 mJ, 5 ns, 10 nm broadband seed, and the main simulation parameters after bar and disk amplifier, which influenced by different SECSs.
位置 激光参数 实际SECS 高斯SECS 棒放 能量/J 24.43 34.23 光谱谱宽/nm 3.6 6 中心波长/nm 1054 1054.5 ∑B 0.24 0.22 片放 能量/J 1957 2369 光谱宽度/nm 3.1 4.5 中心波长/nm 1054.2 1055.5 ∑B 1.7 1.57 表 2 利用神光II高能拍瓦宽频带激光系统得到的实验数据.
Table 2. The experiment results of amplified broadband laser by using SG II PW laser amplification chain.
参数 发次1 发次2 发次3 发次4 实际输出/J 1482 1642 1711 1866 光谱宽度/nm 3.1 3.2 3.0 3.0 中心波长/nm 1054 1054 1054.1 1054.2 预估能量/J 1500 1650 1700 1900 偏差/% 1.2 0.5 0.6 1.8 -
[1] Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar
[2] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[3] Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar
[4] Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9Google Scholar
[5] Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar
[6] Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211Google Scholar
[7] Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003Google Scholar
[8] Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6Google Scholar
[9] Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933
[10] Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87
[11] Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281Google Scholar
[12] Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172
[13] Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar
[14] Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198
[15] 李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 57 4898Google Scholar
Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898Google Scholar
[16] 赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 58 3977Google Scholar
Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977Google Scholar
[17] 张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar
Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767Google Scholar
[18] Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270Google Scholar
[19] Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348Google Scholar
[20] 卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059Google Scholar
Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059Google Scholar
[21] 管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005Google Scholar
Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005Google Scholar
[22] 杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)
Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)
[23] Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258Google Scholar
[24] 刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718Google Scholar
Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718Google Scholar
[25] Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248
[26] He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1
Catalog
Metrics
- Abstract views: 5256
- PDF Downloads: 75
- Cited By: 0