搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性

蒋东镔 张颖 姜大朋 朱斌 李纲 孙立 黄征 卢峰 谢娜 周凯南 粟敬钦

引用本文:
Citation:

Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性

蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦

Nd, Gd:SrF2 crystal spectrum gain characteristic in broadband laser amplification

Jiang Dong-Bin, Zhang Ying, Jiang Da-Peng, Zhu Bin, Li Gang, Sun Li, Huang Zheng, Lu Feng, Xie Na, Zhou Kai-Nan, Su Jing-Qin
PDF
HTML
导出引用
  • 光谱的增益窄化是影响超短脉冲宽带放大的关键因素之一. 本文利用Nd, Gd:SrF2晶体发射光谱的特点, 开展了宽带放大中的光谱增益特性理论和实验的研究. 通过数值模拟, 详细研究了激光增益介质在不同的光谱增益线型及不同增益倍数下, 输出光谱的演化规律. Nd, Gd:SrF2晶体光谱增益窄化特性研究实验结果表明, 输入光谱半高宽为5 nm时, 在140倍的增益条件下, Nd, Gd:SrF2晶体的输出光谱宽度未见明显窄化, 实验结果与理论计算分析相符合. 研究结果为氟化物晶体在宽带啁啾脉冲放大的应用奠定了基础.
    Spectral gain narrowing is one of the key factors affecting broadband amplification of ultrashort pulses. In this paper, the spectral gain characteristics in broadband amplification are studied theoretically and experimentally by using the characteristic of Nd,Gd:SrF2 crystal, i.e. the emission spectrum that has a certain width at the higher stimulated emission cross section. Through the numerical simulation, the evolution law of output spectrum of the laser gain medium under different spectral gain lineshapes and different gain values is studied in detail. Theoretical calculation shows that the spectral gain is narrowed obviously with the increase of gain value of the traditional Gaussian emission spectrum, and that increasing the spectral bandwidth at the maximum stimulated emission cross section can obviously suppress the spectral gain narrowing. Furthermore, the spectral gain narrowing characteristics of the Nd,Gd:SrF2 crystal are studied experimentally. The Ф 13 mm× 150 mm Nd,Gd:SrF2 crystals are used as the gain medium which are pumped by flash lamps in the experimental study. The experimental results show that the output spectra of Nd,Gd:SrF2 crystals are not obviously narrowed when the full width at half maximum (FWHM) of spectral width of the input laser is 5 nm and the gain is 140 times. The experimental results are consistent with the theoretical calculation and analysis. The crystal can work normally at a repetition rate of 0.2 Hz and 1.0 Hz in the experiment, but due to the influence of thermal effect, the gain will decrease to a certain extent with the increase of pump energy and repetition rate. The research results lay the foundation for the application of fluoride crystal in broadband chirped pulse amplification.
      通信作者: 周凯南, zhoukainan@caep.cn ; 粟敬钦, sujingqin@caep.cn
    • 基金项目: 中国工程物理研究院等离子体物理重点实验室研究基金(批准号: ZY2020-06, 6142A04210104)和中国工程物理研究院创新发展基金(批准号: CX20200022)资助的课题.
      Corresponding author: Zhou Kai-Nan, zhoukainan@caep.cn ; Su Jing-Qin, sujingqin@caep.cn
    • Funds: Project supported by the Research Foundation of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, China (Grant Nos. ZY2020-06, 6142A04210104) and the Innovation and Development Foundation of China Academy of Engineering Physics, China (Grant No. CX20200022).
    [1]

    Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Express 19 14223Google Scholar

    [2]

    刘兰琴, 彭翰生, 魏晓峰, 曾小明, 彭志涛, 黄小军, 王晓东, 周凯南, 王逍, 朱启华, 楚晓亮, 郭仪 2005 强激光与粒子束 17 856

    Liu L Q, Peng H S, Wei X F, Zeng X M, Peng Z T, Huang X J, Wang X D, Zhou K N, Wang X, Zhu Q H, Chu X L, Gou Y 2005 High Power Laser Part. Beams 17 856

    [3]

    刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 54 2764Google Scholar

    Liu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Gou Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar

    [4]

    贺晓旭, 白晋涛, 侯洵 2001 光子学报 30 957

    He X X, Bai J T, Hou X 2001 Acta Photonica Sin. 30 957

    [5]

    曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 49 1202Google Scholar

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar

    [6]

    Gaul E W, Martinez M, Blakeney J, Jochmann A, Ringuette M, Hammond D, Borger T, Escamilla R, Douglas S, Henderson W, Dyer G, Erlandson A, Cross R, Caird J, Ebbers C, Ditmire T 2010 Appl. Opt. 49 1676Google Scholar

    [7]

    Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804Google Scholar

    [8]

    Jiang D P, Zhan Y Y, Zhang Q, Ma F K, Su L B, Tang F, Qian X B, Xu J 2015 Cryst. Eng. Comm. 17 7398Google Scholar

    [9]

    Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737Google Scholar

    [10]

    唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧 2016 65 204206Google Scholar

    Tang X X, Qiu J S, Fan Z W, Wang H C, Liu Y L, Liu H, Su L B 2016 Acta Phys. Sin. 65 204206Google Scholar

    [11]

    Tang X X, Qiu J S, Fan Z W, Su L B, Wang H C 2016 Opt. Mater. 58 445Google Scholar

    [12]

    张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军 2016 光子学报 45 0114001Google Scholar

    Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photonica Sin. 45 0114001Google Scholar

    [13]

    Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge R 2013 J. Opt. Soc. Am. B 30 3018Google Scholar

    [14]

    Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B 8 726Google Scholar

    [15]

    Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin. 26 197 (in chinese) [赵尚弘, 王屹山, 陈国夫, 王贤华, 侯洵 1997 光子学报 26 197

    Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin. 26 197 (in chinese)

    [16]

    刘兰琴, 粟敬钦, 罗斌, 王文义, 景峰, 魏晓峰 2007 56 6749Google Scholar

    Liu L Q, Su J Q, Luo B, Wang W Y, Jing F, Wei X F 2007 Acta Phys. Sin. 56 6749Google Scholar

    [17]

    Chen J C, Peng Y J, Zhang Z X, Su H P, Leng Y X, Jiang D P, Ma F K, Qian X B, Tang F, Su L B 2017 Opt. Commun. 382 201Google Scholar

    [18]

    Assmann R W, Weikum M K 2020 Eur. Phys. J. Special Topics 229 3675Google Scholar

  • 图 1  模拟输入激光脉冲光谱分布

    Fig. 1.  Input laser spectrum of simulation.

    图 2  三种不同材料的发射光谱和不同增益下的输出脉冲光谱分布

    Fig. 2.  Emission spectrum of three different materials and their output spectrum with different gain.

    图 3  Nd, Gd:SrF2晶体吸收光谱

    Fig. 3.  Absorption spectrum of the Nd, Gd:SrF2 crystal.

    图 4  Nd, Gd: SrF2晶体发射光谱

    Fig. 4.  Emission spectrum of the Nd, Gd:SrF2 crystal.

    图 5  测试光路示意图. FR, 法拉第; SF, 空间滤波器; AMP, 放大器; CM, 腔镜

    Fig. 5.  Layout of experiment. FR, faraday; SF, spatial filter; AMP, amplifier; CM, cavity mirror

    图 6  不同增益光谱为5 nm (FWHM)时输入输出图

    Fig. 6.  Input and output diagram with the different gain spectra of 5 nm (FWHM).

    图 7  增益与泵浦电压的关系

    Fig. 7.  Gain changing with different pump voltage.

    Baidu
  • [1]

    Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Express 19 14223Google Scholar

    [2]

    刘兰琴, 彭翰生, 魏晓峰, 曾小明, 彭志涛, 黄小军, 王晓东, 周凯南, 王逍, 朱启华, 楚晓亮, 郭仪 2005 强激光与粒子束 17 856

    Liu L Q, Peng H S, Wei X F, Zeng X M, Peng Z T, Huang X J, Wang X D, Zhou K N, Wang X, Zhu Q H, Chu X L, Gou Y 2005 High Power Laser Part. Beams 17 856

    [3]

    刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 54 2764Google Scholar

    Liu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Gou Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar

    [4]

    贺晓旭, 白晋涛, 侯洵 2001 光子学报 30 957

    He X X, Bai J T, Hou X 2001 Acta Photonica Sin. 30 957

    [5]

    曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 49 1202Google Scholar

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar

    [6]

    Gaul E W, Martinez M, Blakeney J, Jochmann A, Ringuette M, Hammond D, Borger T, Escamilla R, Douglas S, Henderson W, Dyer G, Erlandson A, Cross R, Caird J, Ebbers C, Ditmire T 2010 Appl. Opt. 49 1676Google Scholar

    [7]

    Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804Google Scholar

    [8]

    Jiang D P, Zhan Y Y, Zhang Q, Ma F K, Su L B, Tang F, Qian X B, Xu J 2015 Cryst. Eng. Comm. 17 7398Google Scholar

    [9]

    Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737Google Scholar

    [10]

    唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧 2016 65 204206Google Scholar

    Tang X X, Qiu J S, Fan Z W, Wang H C, Liu Y L, Liu H, Su L B 2016 Acta Phys. Sin. 65 204206Google Scholar

    [11]

    Tang X X, Qiu J S, Fan Z W, Su L B, Wang H C 2016 Opt. Mater. 58 445Google Scholar

    [12]

    张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军 2016 光子学报 45 0114001Google Scholar

    Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photonica Sin. 45 0114001Google Scholar

    [13]

    Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge R 2013 J. Opt. Soc. Am. B 30 3018Google Scholar

    [14]

    Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B 8 726Google Scholar

    [15]

    Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin. 26 197 (in chinese) [赵尚弘, 王屹山, 陈国夫, 王贤华, 侯洵 1997 光子学报 26 197

    Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin. 26 197 (in chinese)

    [16]

    刘兰琴, 粟敬钦, 罗斌, 王文义, 景峰, 魏晓峰 2007 56 6749Google Scholar

    Liu L Q, Su J Q, Luo B, Wang W Y, Jing F, Wei X F 2007 Acta Phys. Sin. 56 6749Google Scholar

    [17]

    Chen J C, Peng Y J, Zhang Z X, Su H P, Leng Y X, Jiang D P, Ma F K, Qian X B, Tang F, Su L B 2017 Opt. Commun. 382 201Google Scholar

    [18]

    Assmann R W, Weikum M K 2020 Eur. Phys. J. Special Topics 229 3675Google Scholar

  • [1] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性.  , 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [2] 李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究.  , 2022, 71(7): 074203. doi: 10.7498/aps.71.20211961
    [3] 孙凡, 文峰, 武保剑, Tan Ming-Ming, 凌云, 邱昆. 基于双向正交泵浦半导体光放大器结构的全光相位保持幅度再生技术.  , 2022, 71(20): 204204. doi: 10.7498/aps.71.20220703
    [4] 李大为, 王韬, 尹晓蕾, 李佳美, 王利, 张腾, 张天雄, 崔勇, 卢兴强, 王丽, 张杰, 徐光. 皮秒拍瓦激光系统宽带激光放大的精确模型和性能分析.  , 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830
    [5] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究.  , 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [6] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生.  , 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [7] 刘名扬, 孙维瑾. (Pr3+ ,Yb3+ )共掺氟化物玻璃上转换敏化发光.  , 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [8] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数.  , 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [9] 刘涛, 顾畹仪, 史培明, 喻松, 张华. 基于准相位匹配晶体的宽带可调谐光参量放大过程研究.  , 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [10] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 用于补偿增益窄化效应的Rugate滤波器设计.  , 2009, 58(6): 3977-3982. doi: 10.7498/aps.58.3977
    [11] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大.  , 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [12] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究.  , 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [13] 楚晓亮, 张 彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王 逍, 王晓东, 周凯南, 郭 仪. 啁啾脉冲多程放大及其逆问题的研究.  , 2005, 54(10): 4696-4700. doi: 10.7498/aps.54.4696
    [14] 张 龙, 张军杰, 祁长鸿, 林凤英, 胡和方. 稀土离子掺杂的AlF3基氟化物玻璃.  , 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620
    [15] 曹东茂, 魏志义, 滕 浩, 夏江帆, 张 杰, 侯 洵. 整形种子脉冲克服放大过程中增益窄化效应的研究.  , 2000, 49(6): 1202-1205. doi: 10.7498/aps.49.1202
    [16] 金庆华, 冯少新, 郭振亚, 李宝会, 丁大同. 碱土氟化物离子晶体中点缺陷形成能计算.  , 1999, 48(7): 1261-1268. doi: 10.7498/aps.48.1261
    [17] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同. 碱土氟化物中离子间相互作用势经验参数的确定.  , 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [18] 佘卫龙, 余振新, 李荣基. Cu:KNSBN晶体中复色光自泵浦相位共轭猝灭实验及其理论解释.  , 1996, 45(12): 2016-2021. doi: 10.7498/aps.45.2016
    [19] 赵阳, 杨淑雯. Er3+掺杂光纤孤子放大器(Ⅱ)——最佳泵浦.  , 1994, 43(8): 1281-1288. doi: 10.7498/aps.43.1281
    [20] 王祖赓, 李敏. 光学泵浦的锂分子激光.  , 1988, 37(10): 1640-1645. doi: 10.7498/aps.37.1640
计量
  • 文章访问数:  1753
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-08-26
  • 上网日期:  2023-11-08
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map