Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Localization and intensity calibration of partial discharge based on attenuation effect of ultrasonic sound pressure

Wang Yu-Long Zhang Xiao-Hong Li Li-Li Gao Jun-Guo Guo Ning Cheng Cheng

Citation:

Localization and intensity calibration of partial discharge based on attenuation effect of ultrasonic sound pressure

Wang Yu-Long, Zhang Xiao-Hong, Li Li-Li, Gao Jun-Guo, Guo Ning, Cheng Cheng
PDF
HTML
Get Citation
  • In the insulation system of power equipment, the partial discharge (PD) of short period does not cause the insulation to produce the penetrating breakdown, however the long-term PD of is one of the important causes of local deterioration, and even breakdown in dielectric. Therefore, it is very important to study the location of PD source and the calibration of discharge intensity. To achieve this, in this paper we take the needle-plate discharge model for example and go through the following steps respectively. Firstly, combined with the positive correlation between the ultrasonic signal and the apparent discharge magnitude in the process of PD, the ultrasonic method to detect partial discharge can be implemented. Then, based on the principle of time difference of arrival method (TDOAM), the accuracy of location is analyzed by using quantum genetic algorithm (QGA), genetic algorithm (GA), simulated annealing algorithm (SAA), particle swarm optimization (PSO) and generalized cross correlation method (GCC), respectively. And thus, starting from the study of the attenuation effect of sound pressure caused by the propagation loss, reflection and refraction of acoustic wave, the calibration model of PD intensity is established for the first time after determining the location of PD source with high precision. Some important findings are extracted from simulations and experimental results. First, the localization algorithm of PD source with high precision is observed. The localization of PD source by means of QGA is the most accurate, with maximum deviation of (0.27 ± 0.13) cm. Comparing with GA, SAA, PSO and GCC, the accuracy of location is improved by 33.57%, 41.51%, 32.11% and 87.26%, respectively. Second, due to the attenuation effect of sound pressure, when the measured voltage amplitude of ultrasonic signal is the same, the apparent discharge magnitude of PD source gradually increases with the test distance increasing. When the test distance is 37.80 cm, the apparent discharge magnitude of PD source is 633.83 pC, which increases by 28.51% compared with 7.00 cm. Moreover, simulation results and measurement results are compared with each other and they are well consistent. The discharge curve almost coincides with the calibration fitting curve of PD source when the test distance is 7.00 cm. Finally, it is concluded that the discharge intensity calibration model of PD source is accurate, which is of great significance in evaluating the extent of insulation damage.
      Corresponding author: Zhang Xiao-Hong, x_hzhang2002@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577045) and the Youth Innovation Talent Project of Universities of Guangdong Province, China (Grant No. 2020KQNCX117)
    [1]

    李丹, 胡海云 2014 63 117701Google Scholar

    Li D, Hu H Y 2014 Acta Phys. Sin. 63 117701Google Scholar

    [2]

    Lü Z P, Rowland S M, Chen S Y, Zheng H L 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1999Google Scholar

    [3]

    赵法强, 唐明, 郭飞飞 2020 电线电缆 63 20Google Scholar

    Zhao F Q, Tang M, Guo F F 2020 Electric Wire & Cable 63 20Google Scholar

    [4]

    Romano P, Presti G, Imburgia A, Candela R 2018 IEEE Electr. Insul. M. 34 32Google Scholar

    [5]

    李军浩, 韩旭涛, 刘泽辉, 李彦明 2015 高电压技术 41 2583Google Scholar

    Li J H, Han X T, Liu Z H, Li Y M 2015 High Voltage Eng. 41 2583Google Scholar

    [6]

    Heredia L C C, Mor A R 2019 Int. J. Electr. Power Energy Syst. 107 224Google Scholar

    [7]

    Callender G, Golosnoy I O, Rapisarda P, Lewin P L 2018 J. Phys. D: Appl. Phys. 51 125601Google Scholar

    [8]

    杜劲超, 陈伟根, 张知先, 杨贤 2020 高电压技术 46 2185Google Scholar

    Du J C, Chen W G, Zhang Z X, Yang X 2020 High Voltage Eng. 46 2185Google Scholar

    [9]

    夏睿, 谭笑, 陈杰, 刘洋, 胡丽斌, 李陈莹, 王伟 2020 绝缘材料 53 95Google Scholar

    Xia R, Tan X, Chen J, Liu J, Hu L B, Li C Y, Wang W 2020 Insulating Mater. 53 95Google Scholar

    [10]

    曾喆昭, 周勇, 胡凯 2015 64 070505Google Scholar

    Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505Google Scholar

    [11]

    张若兵, 金森, 杜钢 2020 高电压技术 46 273Google Scholar

    Zhang R B, Jin S, Du G 2020 High Voltage Eng. 46 273Google Scholar

    [12]

    Ahmed Z, Hussain G A, Lehtonen M, Varacka L, Kudelcik J 2016 17 th International Scientific Conference on Electric Power Engineering Prague, Czech Republic, May 16-18, 2016 p1

    [13]

    Iorkyase E T, Tachtatzis C, Atkinson R C, Glover I A 2015 Loughborough Antennas & Propagation Conference UK, Loughborough, November 2−3, 2015 p1

    [14]

    卢毅, 楼樟达 1999 电工技术学报 14 51Google Scholar

    Lu Y, Lou Z D 1999 Trans. Chin. Electrotech. Soc. 14 51Google Scholar

    [15]

    Li Y Q, Lu F C, Xie H L, Yin M 2004 International Conference on Power System Technology Singapore, Singapore, November 21–24, 2004 p1371

    [16]

    吴治国 2007 硕士学位论文 (武汉: 华中科技大学)

    Wu Z G 2007 M. S. Thesis (Wuhan: Huazhong University of Science & Technology) (in Chinese)

    [17]

    Veloso G F C, da Silva L E B, Noronha I, Lambert-Torres G 2008 IEEE International Symposium on Industrial Electronics Cambridge, UK, June 30–July 2, 2008 p1003

    [18]

    Tang L J, Luo R C, Deng M, Su J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 492Google Scholar

    [19]

    张丽君, 谢庆, 李菱, 律方成 2012 高压电器 48 30Google Scholar

    Zhang L J, Xie Q, Li L, Lv F C 2012 High Voltage Apparatus 48 30Google Scholar

    [20]

    谢庆, 律方成, 李燕青, 黄华平, 李宁远, 谭向宇 2014 电工技术学报 26 217Google Scholar

    Xie Q, Lv F C, Li Y Q, Huang H P, Li N Y, Tan X Y 2014 Trans. Chin. Electrotech.l Soc. 26 217Google Scholar

    [21]

    瞿磊 2020 硕士学位论文 (上海: 上海电机学院)

    Qu L 2020 M. S. Thesis (Shanghai: Shanghai Dian Ji university) (in Chinese)

    [22]

    Zhu Y C, Zhou L, Xu H S 2020 Neural Comput. Appl. 32 1775Google Scholar

    [23]

    Zhu M X, Wang Y B, Liu Q, Zhang J N, Deng J B, Zhang G J, Shao X J, He W L 2017 IEEE Trans. Dielectr. Electr. Insul. 24 157Google Scholar

    [24]

    张磊祺, 盛博杰, 姜伟, 周文俊, 田智, 唐泽洋 2015 高电压技术 41 1204Google Scholar

    Zhang L Q, Sheng B J, Jiang W, Zhou W J, Tian Z, Tang Z Y 2015 High Voltage Eng. 41 1204Google Scholar

    [25]

    吴勇峰, 黄绍平, 金国彬 2013 62 130505Google Scholar

    Wu Y F, Huang S P, Jin G B 2013 Acta Phys. Sin. 62 130505Google Scholar

    [26]

    杜锦阳 2013 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Du J Y 2013 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)

    [27]

    芦翔 2017 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Lu X 2017 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)

    [28]

    Morshuis P H F 2005 IEEE Trans. Dielectr. Eectrl. Insul. 12 905Google Scholar

    [29]

    Liu H L 2016 Appl. Acoust. 102 71Google Scholar

    [30]

    Zhu M X, Li J C, Chang D G, Zhang G J, Chen J M 2018 Energies 11 1813Google Scholar

    [31]

    Smith J S, Baginski M E 2019 IEEE Trans. Antennas Propag. 67 2934Google Scholar

    [32]

    Xiao Z K, Xu C G, Xiao D G, Liu F, Yin M 2017 Exp. Tech. 41 389Google Scholar

    [33]

    Gao S G, Zhang Y, Xie Q, Kan Y Q, Li S, Liu D, Lv F C 2017 Energies 10 593Google Scholar

    [34]

    Xie Q, Li T, Tao J H, Liu X Y, Liu D, Xu Y Q 2016 IET Radar Sonar Nav. 10 166Google Scholar

    [35]

    孙才新, 罗兵, 赵文麒, 赵贤正 1997 仪器仪表学报 18 453Google Scholar

    Sun C X, Luo B, Zhao W Q, Zhao X Z 1997 Chin. J. Sci. Instrum. 18 453Google Scholar

  • 图 1  超声波检测试验系统电路图(T1, 隔离变压器; T2, 调压器; C1, L1, 低压低通π型滤波器; T3, 高压实验变压器; C2, L2, 高压低通滤波器; CK, 耦合电容器; Zin, 检测阻抗; T, 油箱; S, 压电传感器; AMP, 前置放大器; DAQ, 数据采集卡)

    Figure 1.  Test system schematic diagram of ultrasonic testing (T1, isolating transformer; T2, voltage regulator; C1, L1, low-voltage low-pass π filter; T3, high voltage test transformer; C2, L2, high-voltage low-pass filter; CK, coupling capacitor; Zin, detection impedance; T, Tank; S, piezoelectric sensor; AMP, preamplifier; DAQ, data acquisition card).

    图 2  针-板放电模型结构示意图(1, 高压引线; 2, 聚乙烯试验板; 3, 聚四氟乙烯支架; 4, 铜电极; 5, 电缆油)

    Figure 2.  Schematic diagram of needle-plate discharge model (1, high voltage wire; 2, polyethylene sample; 3, support frame of polytetrafluoroethylene; 4, copper electrode; 5, cable oil).

    图 3  油箱中放电源及超声波传感器的位置图

    Figure 3.  Location illustration of PD source and ultrasonic sensors in the oil tank.

    图 4  TDOAM中的超声时差示意图

    Figure 4.  Schematic diagram of ultrasonic time difference in TDOAM.

    图 5  脉冲电流法的校正曲线

    Figure 5.  Calibration curve of pulse current method.

    图 6  不同算法下局部放电定位的平均绝对误差变化

    Figure 6.  Average absolute errors of PD location under different algorithms.

    图 7  不同算法下局部放电定位的平均误差变化 (a) 平均绝对误差; (b) 平均最大偏差和综合误差

    Figure 7.  Average errors of PD location under different algorithms: (a) εrx, εry and εrz; (b) Dmax and ΔR.

    图 8  不同绝缘纸厚度的电压幅值与放电量拟合曲线 (a) 2 mm; (b) 3 mm; (c) 4 mm

    Figure 8.  Fitting curves of voltage amplitude and discharge amplitudes at different thickness of insulating papers: (a) 2 mm; (b) 3 mm; (c) 4 mm.

    图 9  不同测量距离下视在放电量与电压的关系

    Figure 9.  Relationship between apparent charge and voltage at different measuring distances.

    表 1  局部放电的超声定位精度比较

    Table 1.  Comparison of ultrasonic location accuracy of PD.

    使用算法研究对象综合距离误差ΔR/cm最大偏差Dmax/cm
    广义互相关算法油箱体内3.94.4
    时延法变压器绝缘0.80.6
    基于高斯-牛顿迭代的等值声速修正算法1.71.6
    粒子群优化算法2.21.9
    遗传算法1.82.0
    多平台测向与全局搜索的阵列定位的结合三电容放电管模型7.86.0
    基于测向线公垂线中点的局部放电相控超声几何定位算法13.910.3
    Chan算法电缆绝缘9.012.0
    DownLoad: CSV

    表 2  QGA的程序过程

    Table 2.  Procedures of QGA.

    过程程序
    种群初
    始化
    $Q\left( t \right) = \left| { {\psi _{q_j^0} } } \right\rangle = \displaystyle\sum\limits_{k = 1}^{ {2^m} } {\dfrac{1}{ {\sqrt { {2^m} } } }\left| { {S_k} } \right\rangle }$
    预设进
    化条件
    Cmax, t, N, Pmax, Pc
    算法
    实现
    For t = 1, 2, 3, ···, Cmax
     for i = 1, 2, ···, N
     ${P_i} = {f_i}\Big/\sum\limits_{i = 1}^N { {f_i} }$
     $\quad P(t) = \left\{ {p_1^t, p_2^t, \cdots, p_n^t} \right\},$
     ${P_c} \!=\! \left\{\!\!\!\! \begin{array}{l}\dfrac{ { { {P_{c\max} } + {P_{\min} } } } }{ {1 \!+\! \exp\left\{ {A\left[ {\dfrac{ {2(f-f')} }{ { {f_{\max} } - {f_{\rm{avg} } } } } } \right]} \right\} } } \!+\! {P_{c\min} }, ~{f \!\geqslant\! {f_{\rm{avg} } } } \\ {P_{c\max} }, \qquad\quad\qquad\qquad\quad\qquad\qquad{f \!\leqslant\! {f_{\rm{avg} } } } \end{array} \right.$
     ${P_m} \!=\! \left\{\!\!\!\! \begin{array}{l} \dfrac{ { { {P_{m\max} } - {P_{\min} } } } }{ {1 \!+\! \exp\left\{ {A\left[ {\dfrac{ {2( {f'' - f'})} }{ { {f_{\max} } - {f_{\rm{avg} } } } } } \right]} \right\} } } \!+\! {P_{m\min} }, ~~{f'' \geqslant {f_{\rm{avg} } } } \\ {P_{m\max} },\;\;\; \qquad\quad\qquad\qquad\qquad\qquad\quad{f'' \leqslant {f_{\rm{avg} } } } \end{array} \right.$
     ${F_{t + 1} }({U({x, y, z, {v_{\rm{e} } }})}) \!=\! {C_{t\max} } \!-\! {U_t}( {x, y, z, {v_{\rm{e} } }})$
     $X_i \;\& \; x_{ {\rm best}, i}\; \& \; f(x) > f(x_{ {\rm best}, i}) \; \& \; \Delta \theta_i$
     S(αi, βi);
     end
    end
    S(αi, βi); P(t); X;
    DownLoad: CSV

    表 3  量子旋转门的调整策略

    Table 3.  Adjustment strategies of quantum rotation gates.

    xixbest,if (x) > f (xbest,i)ΔθiS(αi, βi)
    αi βi > 0αi βi < 0αi = 0βi = 0
    00false00000
    00true00000
    01false0.01π+1–10 ± 1
    01true0.01π–1+1 ± 10
    10false0.01π–1+1 ± 10
    10true0.01π+1–10 ± 1
    11false00000
    11true00000
    DownLoad: CSV

    表 4  局部放电定位的算法参数

    Table 4.  Algorithm parameters of PD localization.

    算法参数数值
    QGA群体数量40
    最大遗传次数200
    GA群体数量40
    最大遗传次数200
    重组概率0.9
    变异概率0.01
    SAA初始温度10
    最终温度0.0001
    衰减系数0.8
    冷却新状态迭代次数1000
    PSO种群大小40
    学习因子2
    初始惯性权值0.9
    原始粒子群1
    迭代次数100
    DownLoad: CSV

    表 5  不同算法的局部放电定位

    Table 5.  The PD location of different algorithms.

    算法位置
    实验组1 (12, 14, 6) cm实验组2 (14, 10, 6) cm实验组3 (15, 11, 6) cm实验组4 (16, 12, 6) cm
    QGA(11.79, 13.61, 5.78)(13.78, 9.88, 6.06)(14.88, 10.86, 5.90)(15.82, 11.84, 5.88)
    GA(12.33, 14.24, 5.73)(13.62, 10.22, 6.16)(14.65, 11.24, 6.22)(16.34, 12.30, 6.24)
    SAA(11.58, 13.41, 5.78)(13.66, 10.32, 6.24)(15.34, 11.22, 6.20)(16.32, 12.28, 6.26)
    PSO(12.12, 14.21, 6.15)(14.32, 9.72, 5.84)(15.42, 11.28, 6.30)(16.42, 12.34, 6.32)
    GCC(13.38, 15.06, 7.42)(15.51, 9.62, 6.94)(15.71, 8.32, 7.24)(14.76, 10.31, 7.13)
    DownLoad: CSV

    表 6  系统灵敏度和相关系数的变化

    Table 6.  Change of system sensitivity and correlation coefficients.

    电缆纸厚度/mm系统灵敏度相关系数
    214.910.99
    314.370.99
    414.840.99
    DownLoad: CSV

    表 7  局部放电的线性系数

    Table 7.  Linear coefficients of PD.

    线性系数K0K1K2K3K4
    数值5.012.982.932.862.95
    DownLoad: CSV
    Baidu
  • [1]

    李丹, 胡海云 2014 63 117701Google Scholar

    Li D, Hu H Y 2014 Acta Phys. Sin. 63 117701Google Scholar

    [2]

    Lü Z P, Rowland S M, Chen S Y, Zheng H L 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1999Google Scholar

    [3]

    赵法强, 唐明, 郭飞飞 2020 电线电缆 63 20Google Scholar

    Zhao F Q, Tang M, Guo F F 2020 Electric Wire & Cable 63 20Google Scholar

    [4]

    Romano P, Presti G, Imburgia A, Candela R 2018 IEEE Electr. Insul. M. 34 32Google Scholar

    [5]

    李军浩, 韩旭涛, 刘泽辉, 李彦明 2015 高电压技术 41 2583Google Scholar

    Li J H, Han X T, Liu Z H, Li Y M 2015 High Voltage Eng. 41 2583Google Scholar

    [6]

    Heredia L C C, Mor A R 2019 Int. J. Electr. Power Energy Syst. 107 224Google Scholar

    [7]

    Callender G, Golosnoy I O, Rapisarda P, Lewin P L 2018 J. Phys. D: Appl. Phys. 51 125601Google Scholar

    [8]

    杜劲超, 陈伟根, 张知先, 杨贤 2020 高电压技术 46 2185Google Scholar

    Du J C, Chen W G, Zhang Z X, Yang X 2020 High Voltage Eng. 46 2185Google Scholar

    [9]

    夏睿, 谭笑, 陈杰, 刘洋, 胡丽斌, 李陈莹, 王伟 2020 绝缘材料 53 95Google Scholar

    Xia R, Tan X, Chen J, Liu J, Hu L B, Li C Y, Wang W 2020 Insulating Mater. 53 95Google Scholar

    [10]

    曾喆昭, 周勇, 胡凯 2015 64 070505Google Scholar

    Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505Google Scholar

    [11]

    张若兵, 金森, 杜钢 2020 高电压技术 46 273Google Scholar

    Zhang R B, Jin S, Du G 2020 High Voltage Eng. 46 273Google Scholar

    [12]

    Ahmed Z, Hussain G A, Lehtonen M, Varacka L, Kudelcik J 2016 17 th International Scientific Conference on Electric Power Engineering Prague, Czech Republic, May 16-18, 2016 p1

    [13]

    Iorkyase E T, Tachtatzis C, Atkinson R C, Glover I A 2015 Loughborough Antennas & Propagation Conference UK, Loughborough, November 2−3, 2015 p1

    [14]

    卢毅, 楼樟达 1999 电工技术学报 14 51Google Scholar

    Lu Y, Lou Z D 1999 Trans. Chin. Electrotech. Soc. 14 51Google Scholar

    [15]

    Li Y Q, Lu F C, Xie H L, Yin M 2004 International Conference on Power System Technology Singapore, Singapore, November 21–24, 2004 p1371

    [16]

    吴治国 2007 硕士学位论文 (武汉: 华中科技大学)

    Wu Z G 2007 M. S. Thesis (Wuhan: Huazhong University of Science & Technology) (in Chinese)

    [17]

    Veloso G F C, da Silva L E B, Noronha I, Lambert-Torres G 2008 IEEE International Symposium on Industrial Electronics Cambridge, UK, June 30–July 2, 2008 p1003

    [18]

    Tang L J, Luo R C, Deng M, Su J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 492Google Scholar

    [19]

    张丽君, 谢庆, 李菱, 律方成 2012 高压电器 48 30Google Scholar

    Zhang L J, Xie Q, Li L, Lv F C 2012 High Voltage Apparatus 48 30Google Scholar

    [20]

    谢庆, 律方成, 李燕青, 黄华平, 李宁远, 谭向宇 2014 电工技术学报 26 217Google Scholar

    Xie Q, Lv F C, Li Y Q, Huang H P, Li N Y, Tan X Y 2014 Trans. Chin. Electrotech.l Soc. 26 217Google Scholar

    [21]

    瞿磊 2020 硕士学位论文 (上海: 上海电机学院)

    Qu L 2020 M. S. Thesis (Shanghai: Shanghai Dian Ji university) (in Chinese)

    [22]

    Zhu Y C, Zhou L, Xu H S 2020 Neural Comput. Appl. 32 1775Google Scholar

    [23]

    Zhu M X, Wang Y B, Liu Q, Zhang J N, Deng J B, Zhang G J, Shao X J, He W L 2017 IEEE Trans. Dielectr. Electr. Insul. 24 157Google Scholar

    [24]

    张磊祺, 盛博杰, 姜伟, 周文俊, 田智, 唐泽洋 2015 高电压技术 41 1204Google Scholar

    Zhang L Q, Sheng B J, Jiang W, Zhou W J, Tian Z, Tang Z Y 2015 High Voltage Eng. 41 1204Google Scholar

    [25]

    吴勇峰, 黄绍平, 金国彬 2013 62 130505Google Scholar

    Wu Y F, Huang S P, Jin G B 2013 Acta Phys. Sin. 62 130505Google Scholar

    [26]

    杜锦阳 2013 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Du J Y 2013 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)

    [27]

    芦翔 2017 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Lu X 2017 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)

    [28]

    Morshuis P H F 2005 IEEE Trans. Dielectr. Eectrl. Insul. 12 905Google Scholar

    [29]

    Liu H L 2016 Appl. Acoust. 102 71Google Scholar

    [30]

    Zhu M X, Li J C, Chang D G, Zhang G J, Chen J M 2018 Energies 11 1813Google Scholar

    [31]

    Smith J S, Baginski M E 2019 IEEE Trans. Antennas Propag. 67 2934Google Scholar

    [32]

    Xiao Z K, Xu C G, Xiao D G, Liu F, Yin M 2017 Exp. Tech. 41 389Google Scholar

    [33]

    Gao S G, Zhang Y, Xie Q, Kan Y Q, Li S, Liu D, Lv F C 2017 Energies 10 593Google Scholar

    [34]

    Xie Q, Li T, Tao J H, Liu X Y, Liu D, Xu Y Q 2016 IET Radar Sonar Nav. 10 166Google Scholar

    [35]

    孙才新, 罗兵, 赵文麒, 赵贤正 1997 仪器仪表学报 18 453Google Scholar

    Sun C X, Luo B, Zhao W Q, Zhao X Z 1997 Chin. J. Sci. Instrum. 18 453Google Scholar

  • [1] Yang Bin, Wei Shuo, Shi Kai-Yuan. Modelling of multi-stage nonlinear interaction of micro-crack and ultrasonic based on equivalent elastic modulus. Acta Physica Sinica, 2017, 66(13): 134301. doi: 10.7498/aps.66.134301
    [2] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [3] Zeng Zhe-Zhao, Zhou Yong, Hu Kai. Study on partial discharge signals detection by extended Duffing oscillator. Acta Physica Sinica, 2015, 64(7): 070505. doi: 10.7498/aps.64.070505
    [4] Li Dan, Hu Hai-Yun. Studies on the kinetic theory of polymer dielectric breakdown due to partial discharge. Acta Physica Sinica, 2014, 63(11): 117701. doi: 10.7498/aps.63.117701
    [5] Wang Tian-Shu, Zhang Rui-De, Guan Zhe, Ba Ke, Zu Yun-Xiao. Properties of memristor in RLC circuit and diode circuit. Acta Physica Sinica, 2014, 63(17): 178101. doi: 10.7498/aps.63.178101
    [6] Chen Chong, Ding Jiong, Zhang Hong, Chen Zhuo. Study of an integrate-and-discharge model with symbolic dynamics. Acta Physica Sinica, 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [7] Wu Yong-Feng, Huang Shao-Ping, Jin Guo-Bin. Study on partial discharge signal detection by coupled Duffing oscillators. Acta Physica Sinica, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [8] Zhang Xiao-Xing, Meng Fan-Sheng, Tang Ju, Yang Bing. DFT calculations on the adsorption of component SF6 decomposed under partial discharge onto carbon nanotubes modified by -OH. Acta Physica Sinica, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
    [9] Gu Hua-Guang, Zhu Zhou, Jia Bing. Dynamics of a novel chaotic neural firing pattern discovered in experiment and simulated in mathematical model. Acta Physica Sinica, 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [10] Zhang Xu, Zhou Yu-Ze, Bi Qiang, Yang Xing-Hua, Zu Yun-Xiao. The mathematical model and properties of memristor with border constraint. Acta Physica Sinica, 2010, 59(9): 6673-6680. doi: 10.7498/aps.59.6673
    [11] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [12] Dong Li-Fang, Yang Li, Li Yong-Hui, Zhang Yan-Zhao, Yue Han. Spatial distributions of the intensity of luminescence and the vibrational temperature of single micro-discharge channel in air dielectric barrier discharge. Acta Physica Sinica, 2009, 58(12): 8461-8466. doi: 10.7498/aps.58.8461
    [13] Song Nan-Nan, Wu Shi-Ping, Luan Yi-Kun, Kang Xiu-Hong, Li Dian-Zhong. Numerical simulation and hydraulic experiment of horizontal centrifugal casting. Acta Physica Sinica, 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [14] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [15] Gao Yan-Qi, Zhu Bao-Qiang, Liu Dai-Zhong, Peng Zeng-Yun, Lin Zhun-Qi. Study of mathematical model for auto-alignment in four-pass amplifier. Acta Physica Sinica, 2008, 57(11): 6992-6997. doi: 10.7498/aps.57.6992
    [16] Guo Yong-Cun, Zeng Yi-Shan, Lu De-Tang. The non-Newtonian fluid mathematical model for strata static temperature forecast. Acta Physica Sinica, 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
    [17] WANG TAO, CHENG QING-MIN, MAO DAI-SHENG. THE MODEL OF MAGNETICALLY CONFINED DISCHARGE CO LASER. Acta Physica Sinica, 2000, 49(12): 2369-2373. doi: 10.7498/aps.49.2369
    [18] YANG SHI-XIN. A MATHEMATICAL MODEL OF SURFACE-PRESSURE-INDUCED SEPARATION OF CHIRAL PHASES IN MONOLAYER OF RACEMIC AMPHIPHILES AND ITS CLASSICAL SOLUTIONS IN TWO-DIMENSIONAL CASE. Acta Physica Sinica, 1998, 47(10): 1673-1679. doi: 10.7498/aps.47.1673
    [19] DU YOU-WEI, TONG XING-WU, ZHONG WEI, WANG TING-XIANG, GAN CHANG-MING, ZHANG XIAO-RONG. PROPAGATING CHARACTERISTICS OF ULTRASONIC WAVE IN THE MAGNETIC LIQID. Acta Physica Sinica, 1992, 41(1): 144-148. doi: 10.7498/aps.41.144
    [20] WEI YUNG-CHIO, CHANG SHU-I. ULTRASONIC ABSORPTION IN AQUEOUS SUSPENSIONS. Acta Physica Sinica, 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
Metrics
  • Abstract views:  5922
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2020
  • Accepted Date:  27 November 2020
  • Available Online:  19 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回
Baidu
map