Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transcription apparatus: A dancer on a rope

Wang Yaolai Liu Feng

Citation:

Transcription apparatus: A dancer on a rope

Wang Yaolai, Liu Feng
PDF
HTML
Get Citation
  • Laws of physics govern all forms of matter movement. However, lives, which are composed of chemical elements which everyone is familiar with, are largely beyond physical description available. This is because the construction of life is not the same as that of general matters, rendering it unknown how physics laws are utilized. In this paper, we present our thinking on the transcriptional apparatus (TA). The TA is a huge molecular machine acting to sense regulatory signals and initiate transcripts at right time and with right rate. The operation of the TA is fundamental to almost all forms of lives. Although great progress has been made in recent years, one often has to face contradictory conclusions from different studies. Additionally, the studies of transcription are divided into several fields, and different fields are increasingly separate and independent. Focusing on eukaryotic transcription, in this review we briefly describe major advances in various fields and present new conflicting view points. Although the structural studies have revealed the main components and architecture of the TA, it is still unclear how the Mediator complex transmits signals from activators to the core transcriptional machinery at the promoter. It is believed that the Mediator functions to recruit RNA polymerase II onto the promoter and promote the entry into transcriptional elongation, which fails to explain how the signal transduction is achieved. On the other hand, the allostery effect of the Mediator allows for signal transmission but is not supported by structural study. It is reported that enhancers, especially supper enhancers, act to recruit activators via forming a so-called liquid drop and phase separation. By contrast, it is suggested that enhancers should cooperate delicately to orchestrate transcription. Results on the kinetics of protein-promoter interaction also contrast with each other, leading to a paradox called “transcriptional clock”. It is then concluded that proteins interact frequently and transiently with promoters and different proteins interact with the promoter at different stages of transcriptional progression. The phenomenon of transcriptional burst questions how the cellular signaling is achieved through such a noisy manner. While the burst frequency or size, or both are potentially modulated by transcriptional activators, more evidence supports the mode of frequency modulation. The technical difficulties in investigating the mechanism of transcription include 1) structural characterization of flexible and/or unstable proteins or protein complexes, 2) measurement of intermolecular kinetics, 3) tracking of single molecule movement, and 4) lack of methodology in theoretical research. We further propose a research strategy based on the ensemble statistical method, and introduce a model for how the TA dynamically operates. The model may act as a benchmark for further investigations. The operating mechanism of the TA should reflect an optimal use of physics laws as a result of long-term biological evolution.
      Corresponding author: Wang Yaolai, yaolaiwang@jiangnan.edu.cn ; Liu Feng, fliu@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804123, 11831015, 11874209)
    [1]

    Brivanlou A H, Darnell Jr J E 2002 Science 295 813Google Scholar

    [2]

    Blake W J, Kaern M, Cantor C R, Collins J J 2003 Nature 422 633Google Scholar

    [3]

    Gregor T, Tank D W, Wieschaus E F, Bialek W 2007 Cell 130 153Google Scholar

    [4]

    Weake V M, Workman J L 2010 Nat. Rev. Genet. 11 426Google Scholar

    [5]

    Fuda N J, Ardehali M B, Lis J T 2009 Nature 461 186Google Scholar

    [6]

    Senecal A, Munsky B, Proux F, Ly N, Braye F E, Zimmer C, Mueller F, Darzacq X 2014 Cell Rep. 8 75Google Scholar

    [7]

    Koonin E V 2015 Biol. Direct. 10 52Google Scholar

    [8]

    Bussard A E 2005 EMBO Rep. 6 691Google Scholar

    [9]

    Crick F 1970 Nature 227 561Google Scholar

    [10]

    Crick F H 1958 Symp. Soc. Exp. Biol. 12 138

    [11]

    Hurwitz J 2005 J. Biol. Chem. 280 42477Google Scholar

    [12]

    Young R A 1991 Annu. Rev. Biochem. 60 689Google Scholar

    [13]

    Lis J T 2019 Nat. Struct. Mol. Biol. 26 777Google Scholar

    [14]

    Krishnamurthy S, Hampsey M 2009 Curr. Biol. 19 R153Google Scholar

    [15]

    Kornberg R D 2007 Proc. Natl. Acad. Sci. U.S.A. 104 12955Google Scholar

    [16]

    Wang D, Bushnell D A, Westover K D, Kaplan C D, Kornberg R D 2006 Cell 127 941Google Scholar

    [17]

    Westover K D, Bushnell D A, Kornberg R D 2004 Science 303 1014Google Scholar

    [18]

    Hahn S 2004 Nat. Struct. Mol. Biol. 11 394Google Scholar

    [19]

    Thomas M C, Chiang C M 2006 Crit. Rev. Biochem. Mol. Biol. 41 105Google Scholar

    [20]

    Cramer P, Bushnell D A, Kornberg R D 2001 Science 292 1863Google Scholar

    [21]

    Cramer P, Bushnell D A, Fu J, Gnatt A L, Maier-Davis B, Thompson N E, Burgess R R, Edwards A M, David P R, Kornberg R D 2000 Science 288 640Google Scholar

    [22]

    Fu J, Gnatt A L, Bushnell D A, Jensen G J, Thompson N E, Burgess R R, David P R, Kornberg R D 1999 Cell 98 799Google Scholar

    [23]

    Meredith G D, Chang W H, Li Y, Bushnell D A, Darst S A, Kornberg R D 1996 J. Mol. Biol. 258 413Google Scholar

    [24]

    Murakami K, Tsai K L, Kalisman N, Bushnell D A, Asturias F J, Kornberg R D 2015 Proc. Natl. Acad. Sci. U.S.A. 112 13543Google Scholar

    [25]

    Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274Google Scholar

    [26]

    Schweikhard V, Meng C, Murakami K, Kaplan C D, Kornberg R D, Block S M 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6642Google Scholar

    [27]

    Murakami K, Elmlund H, Kalisman N, Bushnell D A, Adams C M, Azubel M, Elmlund D, Levi-Kalisman Y, Liu X, Gibbons B J, Levitt M, Kornberg R D 2013 Science 342 1238724Google Scholar

    [28]

    Liu X, Bushnell D A, Kornberg R D 2013 Biochim. Biophys. Acta. 1829 2Google Scholar

    [29]

    Liu X, Bushnell D A, Wang D, Calero G, Kornberg R D 2010 Science 327 206Google Scholar

    [30]

    Kelleher R J, 3 rd, Flanagan P M, Kornberg R D 1990 Cell 61 1209Google Scholar

    [31]

    Flanagan P M, Kelleher R J, 3 rd, Sayre M H, Tschochner H, Kornberg R D 1991 Nature 350 436Google Scholar

    [32]

    Kim Y J, Bjorklund S, Li Y, Sayre M H, Kornberg R D 1994 Cell 77 599Google Scholar

    [33]

    Kim T K, Shiekhattar R 2015 Cell 162 948Google Scholar

    [34]

    Haberle V, Lenhard B 2016 Semin. Cell Dev. Biol. 57 11Google Scholar

    [35]

    Robinson P J, Trnka M J, Bushnell D A, Davis R E, Mattei P J, Burlingame A L, Kornberg R D 2016 Cell 166 1411Google Scholar

    [36]

    Robinson P J, Trnka M J, Pellarin R, Greenberg C H, Bushnell D A, Davis R, Burlingame A L, Sali A, Kornberg R D 2015 eLife 4 e08719Google Scholar

    [37]

    Plaschka C, Lariviere L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko E V, Borchers C H, Baumeister W, Herzog F, Villa E, Cramer P 2015 Nature 518 376Google Scholar

    [38]

    Poss Z C, Ebmeier C C, Taatjes D J 2013 Crit. Rev. Biochem. Mol. Biol. 48 575Google Scholar

    [39]

    Casamassimi A, Napoli C 2007 Biochimie 89 1439Google Scholar

    [40]

    Takagi Y, Kornberg R D 2006 J. Biol. Chem. 281 80Google Scholar

    [41]

    Kornberg R D 2005 Trends Biochem. Sci. 30 235Google Scholar

    [42]

    Kornberg R D 2005 Trends Biochem. Sci. 30 221Google Scholar

    [43]

    Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A 2019 Nature 572 543Google Scholar

    [44]

    Wang Y, Liu F, Wang W 2012 Sci. Rep. 2 422Google Scholar

    [45]

    Meyer K D, Lin S C, Bernecky C, Gao Y, Taatjes D J 2010 Nat. Struct. Mol. Biol. 17 753Google Scholar

    [46]

    Natoli G, Saccani S, Bosisio D, Marazzi I 2005 Nat. Immunol. 6 439Google Scholar

    [47]

    Levine M, Cattoglio C, Tjian R 2014 Cell 157 13Google Scholar

    [48]

    Wang Y M, Austin R H, Cox E C 2006 Phys. Rev. Lett. 97 048302Google Scholar

    [49]

    Elf J, Li G W, Xie X S 2007 Science 316 1191Google Scholar

    [50]

    Whyte W A, Orlando D A, Hnisz D, Abraham B J, Lin C Y, Kagey M H, Rahl P B, Lee T I, Young R A 2013 Cell 153 307Google Scholar

    [51]

    Spitz F, Furlong E E M 2012 Nat. Rev. Genet. 13 613Google Scholar

    [52]

    Hahn S 2018 Cell 175 1723Google Scholar

    [53]

    Boija A, Klein I A, Sabari B R, Dall’Agnese A, Coffey E L, Zamudio A V, Li C H, Shrinivas K, Manteiga J C, Hannett N M, Abraham B J, Afeyan L K, Guo Y E, Rimel J K, Fant C B, Schuijers J, Lee T I, Taatjes D J, Young R A 2018 Cell 175 1842Google Scholar

    [54]

    Sabari B R, Dall’Agnese A, Boija A, Klein I A, Coffey E L, Shrinivas K, Abraham B J, Hannett N M, Zamudio A V, Manteiga J C, Li C H, Guo Y E, Day D S, Schuijers J, Vasile E, Malik S, Hnisz D, Lee T I, Cisse I I, Roeder R G, Sharp P A, Chakraborty A K, Young R A 2018 Science 361 eaar3958Google Scholar

    [55]

    Rippe K 2000 Biochemistry 39 2131Google Scholar

    [56]

    Atkinson M R, Pattaramanon N, Ninfa A J 2002 Mol. Microbiol. 46 1247Google Scholar

    [57]

    Lilja A E, Jenssen J R, Kahn J D 2004 J. Mol. Biol. 342 467Google Scholar

    [58]

    Huo Y X, Tian Z X, Rappas M, Wen J, Chen Y C, You C H, Zhang X, Buck M, Wang Y P, Kolb A 2006 Mol. Microbiol. 59 168Google Scholar

    [59]

    Wang Y, Liu F, Wang W 2016 Nucleic Acids Res. 44 10530Google Scholar

    [60]

    Elison G L, Xue Y, Song R, Acar M 2018 Cell Rep. 25 737Google Scholar

    [61]

    Donovan B T, Huynh A, Ball D A, Patel H P, Poirier M G, Larson D R, Ferguson M L, Lenstra T L 2019 EMBO J. 38 e100809Google Scholar

    [62]

    Karpova T S, Kim M J, Spriet C, Nalley K, Stasevich T J, Kherrouche Z, Heliot L, McNally J G 2008 Science 319 466Google Scholar

    [63]

    Métivier R, Reid G, Gannon F 2006 EMBO Rep. 7 161Google Scholar

    [64]

    Métivier R, Penot G, Hubner M R, Reid G, Brand H, Kos M, Gannon F 2003 Cell 115 751Google Scholar

    [65]

    Kang Z, Pirskanen A, Janne O A, Palvimo J J 2002 J. Biol. Chem. 277 48366Google Scholar

    [66]

    Liu Y, Xia X, Fondell J D, Yen P M 2006 Mol. Endocrinol. 20 483Google Scholar

    [67]

    Shang Y, Hu X, DiRenzo J, Lazar M A, Brown M 2000 Cell 103 843Google Scholar

    [68]

    Becker M, Baumann C, John S, Walker D A, Vigneron M, McNally J G, Hager G L 2002 EMBO Rep. 3 1188Google Scholar

    [69]

    Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy S M, Phair R D, Singer R H 2007 Nat. Struct. Mol. Biol. 14 796Google Scholar

    [70]

    Johnson T A, Elbi C, Parekh B S, Hager G L, John S 2008 Mol. Biol. Cell 19 3308Google Scholar

    [71]

    Catez F, Ueda T, Bustin M 2006 Nat. Struct. Mol. Biol. 13 305Google Scholar

    [72]

    Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi M E, Natoli G 2006 EMBO J. 25 798Google Scholar

    [73]

    Reid G, Hubner M R, Métivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F 2003 Mol. Cell 11 695Google Scholar

    [74]

    Hager G L, McNally J G, Misteli T 2009 Mol. Cell 35 741Google Scholar

    [75]

    Reid G, Gallais R, Métivier R 2009 Int. J. Biochem. Cell Biol. 41 155Google Scholar

    [76]

    Wang Y, Liu F, Li J, Wang W 2014 J. R. Soc. Interface 11 20140253Google Scholar

    [77]

    Lemaire V, Lee C F, Lei J, Métivier R, Glass L 2006 Phys. Rev. Lett. 96 198102Google Scholar

    [78]

    Krasnov A N, Mazina M Y, Nikolenko J V, Vorobyeva N E 2016 Cell Biosci. 6 15Google Scholar

    [79]

    Gourse R L, Landick R 2012 Cell 148 635Google Scholar

    [80]

    Lenstra T L, Rodriguez J, Chen H, Larson D R 2016 Annu. Rev. Biophys. 45 25Google Scholar

    [81]

    Raj A, van Oudenaarden A 2008 Cell 135 216Google Scholar

    [82]

    Hocine S, Raymond P, Zenklusen D, Chao J A, Singer R H 2013 Nat. Methods 10 119Google Scholar

    [83]

    Lim F, Peabody D S 2002 Nucleic Acids Res. 30 4138Google Scholar

    [84]

    Chubb J R, Trcek T, Shenoy S M, Singer R H 2006 Curr. Biol. 16 1018Google Scholar

    [85]

    Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M 1998 Mol. Cell 2 437Google Scholar

    [86]

    Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J M, Robert M C, Capozi S, Chouaib R, Backer V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E 2016 Nat. Commun. 7 12248Google Scholar

    [87]

    Fukaya T, Lim B, Levine M 2016 Cell 166 358Google Scholar

    [88]

    Corrigan A M, Tunnacliffe E, Cannon D, Chubb J R 2016 eLife 5 e13051Google Scholar

    [89]

    Chong S, Chen C, Ge H, Xie X S 2014 Cell 158 314Google Scholar

    [90]

    Suter D M, Molina N, Gatfield D, Schneider K, Schibler U, Naef F 2011 Science 332 472Google Scholar

    [91]

    Tripathi T, Chowdhury D 2008 EPL 84 68004Google Scholar

    [92]

    Golding I, Paulsson J, Zawilski S M, Cox E C 2005 Cell 123 1025Google Scholar

    [93]

    Raj A, Peskin C S, Tranchina D, Vargas D Y, Tyagi S 2006 PLoS Biol. 4 e309Google Scholar

    [94]

    Sanchez A, Golding I 2013 Science 342 1188Google Scholar

    [95]

    Wang Y, Ni T, Wang W, Liu F 2019 Biol. Rev. 94 248Google Scholar

    [96]

    Tunnacliffe E, Chubb J R 2020 Trends Genet. 36 288Google Scholar

    [97]

    Yao J 2017 J. Mol. Biol. 429 14Google Scholar

    [98]

    Nicolas D, Phillips N E, Naef F 2017 Mol. Biosyst. 13 1280Google Scholar

    [99]

    Hnisz D, Shrinivas K, Young R A, Chakraborty A K, Sharp P A 2017 Cell 169 13Google Scholar

    [100]

    Chubb J R 2017 Wiley Interdiscip. Rev.-Dev. Biol. 6 e284Google Scholar

    [101]

    Bressloff P C 2017 J. Phys. A-Math. Theor. 50 133001Google Scholar

    [102]

    Reinius B, Sandberg R 2015 Nat. Rev. Genet. 16 653Google Scholar

    [103]

    Munsky B, Neuert G 2015 Phys. Biol. 12 045004Google Scholar

    [104]

    Munsky B, Fox Z, Neuert G 2015 Methods 85 12Google Scholar

    [105]

    Boeger H, Shelansky R, Patel H, Brown C R 2015 Genes 6 469Google Scholar

    [106]

    Skupsky R, Burnett J C, Foley J E, Schaffer D V, Arkin A P 2010 PLoS Comput. Biol. 6 e1000952Google Scholar

    [107]

    Dar R D, Razooky B S, Singh A, Trimeloni T V, McCollum J M, Cox C D, Simpson M L, Weinberger L S 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17454Google Scholar

    [108]

    Molina N, Suter D M, Cannavo R, Zoller B, Gotic I, Naef F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 20563Google Scholar

    [109]

    Corrigan A M, Chubb J R 2014 Curr. Biol. 24 205Google Scholar

    [110]

    Giri R, Papadopoulos D K, Posadas D M, Potluri H K, Tomancak P, Mani M, Carthew R W 2020 eLife 9 e53638Google Scholar

    [111]

    Lammers N C, Galstyan V, Reimer A, Medin S A, Wiggins C H, Garcia H G 2020 Proc. Natl. Acad. Sci. U.S.A. 117 836Google Scholar

    [112]

    Tian X, Huang B, Zhang X P, Lu M, Liu F, Onuchic J N, Wang W 2017 Proc. Natl. Acad. Sci. U.S.A. 114 5337Google Scholar

    [113]

    Ko M S 1992 Bioessays 14 341Google Scholar

    [114]

    Sanchez A, Choubey S, Kondev J 2013 Methods 62 13Google Scholar

    [115]

    Peccoud J, Ycart B 1995 Theor. Popul. 48 222Google Scholar

    [116]

    Pedraza J M, Paulsson J 2008 Science 319 339Google Scholar

    [117]

    Freeman B C, Yamamoto K R 2002 Science 296 2232Google Scholar

    [118]

    Stavreva D A, Muller W G, Hager G L, Smith C L, McNally J G 2004 Mol. Cell. Biol. 24 2682Google Scholar

    [119]

    Wang Y, Qi J, Shao J, Tang X Q 2020 Biology 9 339Google Scholar

  • 图 1  转录机器的基本架构和信号转导

    Figure 1.  Configuration and signaling of the transcriptional apparatus.

    图 2  媒介子工作原理的两大模型 (a) 相分离模型; (b) 变构模型

    Figure 2.  Two models of how the Mediator complex operates: (a) The Mediator acts to nucleate the flexible CTDs of Pol IIs, with the efficiency of Pol II assembly elevated; (b) an enhancer-bound activator induces allostery in the Mediator, resulting in a facilitated circumstance for transcription initiation.

    图 3  增强子工作原理的两种模型 (a) 液滴模型; (b) 分工协作模型

    Figure 3.  Two models of how the enhancers function: (a) In the phase separation model, enhancers recruit transcriptional activators that further recruit various coactivators and the transcriptional apparatus via low-affinity disordered regions; (b) every enhancer plays a unique role and different enhancers cooperate to orchestrate transcription regulation. Shown is an example of regulatory mode at the glnAp2 promoter.

    图 4  pS 2基因启动子的“转录钟”

    Figure 4.  Transcriptional clock of the human pS 2 promoter.

    图 5  转录爆发[95]

    Figure 5.  Transcriptional burst[95].

    图 6  转录机器的理想化模型[44]

    Figure 6.  Ideal model for how the transcriptional apparatus operates[44].

    Baidu
  • [1]

    Brivanlou A H, Darnell Jr J E 2002 Science 295 813Google Scholar

    [2]

    Blake W J, Kaern M, Cantor C R, Collins J J 2003 Nature 422 633Google Scholar

    [3]

    Gregor T, Tank D W, Wieschaus E F, Bialek W 2007 Cell 130 153Google Scholar

    [4]

    Weake V M, Workman J L 2010 Nat. Rev. Genet. 11 426Google Scholar

    [5]

    Fuda N J, Ardehali M B, Lis J T 2009 Nature 461 186Google Scholar

    [6]

    Senecal A, Munsky B, Proux F, Ly N, Braye F E, Zimmer C, Mueller F, Darzacq X 2014 Cell Rep. 8 75Google Scholar

    [7]

    Koonin E V 2015 Biol. Direct. 10 52Google Scholar

    [8]

    Bussard A E 2005 EMBO Rep. 6 691Google Scholar

    [9]

    Crick F 1970 Nature 227 561Google Scholar

    [10]

    Crick F H 1958 Symp. Soc. Exp. Biol. 12 138

    [11]

    Hurwitz J 2005 J. Biol. Chem. 280 42477Google Scholar

    [12]

    Young R A 1991 Annu. Rev. Biochem. 60 689Google Scholar

    [13]

    Lis J T 2019 Nat. Struct. Mol. Biol. 26 777Google Scholar

    [14]

    Krishnamurthy S, Hampsey M 2009 Curr. Biol. 19 R153Google Scholar

    [15]

    Kornberg R D 2007 Proc. Natl. Acad. Sci. U.S.A. 104 12955Google Scholar

    [16]

    Wang D, Bushnell D A, Westover K D, Kaplan C D, Kornberg R D 2006 Cell 127 941Google Scholar

    [17]

    Westover K D, Bushnell D A, Kornberg R D 2004 Science 303 1014Google Scholar

    [18]

    Hahn S 2004 Nat. Struct. Mol. Biol. 11 394Google Scholar

    [19]

    Thomas M C, Chiang C M 2006 Crit. Rev. Biochem. Mol. Biol. 41 105Google Scholar

    [20]

    Cramer P, Bushnell D A, Kornberg R D 2001 Science 292 1863Google Scholar

    [21]

    Cramer P, Bushnell D A, Fu J, Gnatt A L, Maier-Davis B, Thompson N E, Burgess R R, Edwards A M, David P R, Kornberg R D 2000 Science 288 640Google Scholar

    [22]

    Fu J, Gnatt A L, Bushnell D A, Jensen G J, Thompson N E, Burgess R R, David P R, Kornberg R D 1999 Cell 98 799Google Scholar

    [23]

    Meredith G D, Chang W H, Li Y, Bushnell D A, Darst S A, Kornberg R D 1996 J. Mol. Biol. 258 413Google Scholar

    [24]

    Murakami K, Tsai K L, Kalisman N, Bushnell D A, Asturias F J, Kornberg R D 2015 Proc. Natl. Acad. Sci. U.S.A. 112 13543Google Scholar

    [25]

    Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274Google Scholar

    [26]

    Schweikhard V, Meng C, Murakami K, Kaplan C D, Kornberg R D, Block S M 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6642Google Scholar

    [27]

    Murakami K, Elmlund H, Kalisman N, Bushnell D A, Adams C M, Azubel M, Elmlund D, Levi-Kalisman Y, Liu X, Gibbons B J, Levitt M, Kornberg R D 2013 Science 342 1238724Google Scholar

    [28]

    Liu X, Bushnell D A, Kornberg R D 2013 Biochim. Biophys. Acta. 1829 2Google Scholar

    [29]

    Liu X, Bushnell D A, Wang D, Calero G, Kornberg R D 2010 Science 327 206Google Scholar

    [30]

    Kelleher R J, 3 rd, Flanagan P M, Kornberg R D 1990 Cell 61 1209Google Scholar

    [31]

    Flanagan P M, Kelleher R J, 3 rd, Sayre M H, Tschochner H, Kornberg R D 1991 Nature 350 436Google Scholar

    [32]

    Kim Y J, Bjorklund S, Li Y, Sayre M H, Kornberg R D 1994 Cell 77 599Google Scholar

    [33]

    Kim T K, Shiekhattar R 2015 Cell 162 948Google Scholar

    [34]

    Haberle V, Lenhard B 2016 Semin. Cell Dev. Biol. 57 11Google Scholar

    [35]

    Robinson P J, Trnka M J, Bushnell D A, Davis R E, Mattei P J, Burlingame A L, Kornberg R D 2016 Cell 166 1411Google Scholar

    [36]

    Robinson P J, Trnka M J, Pellarin R, Greenberg C H, Bushnell D A, Davis R, Burlingame A L, Sali A, Kornberg R D 2015 eLife 4 e08719Google Scholar

    [37]

    Plaschka C, Lariviere L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko E V, Borchers C H, Baumeister W, Herzog F, Villa E, Cramer P 2015 Nature 518 376Google Scholar

    [38]

    Poss Z C, Ebmeier C C, Taatjes D J 2013 Crit. Rev. Biochem. Mol. Biol. 48 575Google Scholar

    [39]

    Casamassimi A, Napoli C 2007 Biochimie 89 1439Google Scholar

    [40]

    Takagi Y, Kornberg R D 2006 J. Biol. Chem. 281 80Google Scholar

    [41]

    Kornberg R D 2005 Trends Biochem. Sci. 30 235Google Scholar

    [42]

    Kornberg R D 2005 Trends Biochem. Sci. 30 221Google Scholar

    [43]

    Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A 2019 Nature 572 543Google Scholar

    [44]

    Wang Y, Liu F, Wang W 2012 Sci. Rep. 2 422Google Scholar

    [45]

    Meyer K D, Lin S C, Bernecky C, Gao Y, Taatjes D J 2010 Nat. Struct. Mol. Biol. 17 753Google Scholar

    [46]

    Natoli G, Saccani S, Bosisio D, Marazzi I 2005 Nat. Immunol. 6 439Google Scholar

    [47]

    Levine M, Cattoglio C, Tjian R 2014 Cell 157 13Google Scholar

    [48]

    Wang Y M, Austin R H, Cox E C 2006 Phys. Rev. Lett. 97 048302Google Scholar

    [49]

    Elf J, Li G W, Xie X S 2007 Science 316 1191Google Scholar

    [50]

    Whyte W A, Orlando D A, Hnisz D, Abraham B J, Lin C Y, Kagey M H, Rahl P B, Lee T I, Young R A 2013 Cell 153 307Google Scholar

    [51]

    Spitz F, Furlong E E M 2012 Nat. Rev. Genet. 13 613Google Scholar

    [52]

    Hahn S 2018 Cell 175 1723Google Scholar

    [53]

    Boija A, Klein I A, Sabari B R, Dall’Agnese A, Coffey E L, Zamudio A V, Li C H, Shrinivas K, Manteiga J C, Hannett N M, Abraham B J, Afeyan L K, Guo Y E, Rimel J K, Fant C B, Schuijers J, Lee T I, Taatjes D J, Young R A 2018 Cell 175 1842Google Scholar

    [54]

    Sabari B R, Dall’Agnese A, Boija A, Klein I A, Coffey E L, Shrinivas K, Abraham B J, Hannett N M, Zamudio A V, Manteiga J C, Li C H, Guo Y E, Day D S, Schuijers J, Vasile E, Malik S, Hnisz D, Lee T I, Cisse I I, Roeder R G, Sharp P A, Chakraborty A K, Young R A 2018 Science 361 eaar3958Google Scholar

    [55]

    Rippe K 2000 Biochemistry 39 2131Google Scholar

    [56]

    Atkinson M R, Pattaramanon N, Ninfa A J 2002 Mol. Microbiol. 46 1247Google Scholar

    [57]

    Lilja A E, Jenssen J R, Kahn J D 2004 J. Mol. Biol. 342 467Google Scholar

    [58]

    Huo Y X, Tian Z X, Rappas M, Wen J, Chen Y C, You C H, Zhang X, Buck M, Wang Y P, Kolb A 2006 Mol. Microbiol. 59 168Google Scholar

    [59]

    Wang Y, Liu F, Wang W 2016 Nucleic Acids Res. 44 10530Google Scholar

    [60]

    Elison G L, Xue Y, Song R, Acar M 2018 Cell Rep. 25 737Google Scholar

    [61]

    Donovan B T, Huynh A, Ball D A, Patel H P, Poirier M G, Larson D R, Ferguson M L, Lenstra T L 2019 EMBO J. 38 e100809Google Scholar

    [62]

    Karpova T S, Kim M J, Spriet C, Nalley K, Stasevich T J, Kherrouche Z, Heliot L, McNally J G 2008 Science 319 466Google Scholar

    [63]

    Métivier R, Reid G, Gannon F 2006 EMBO Rep. 7 161Google Scholar

    [64]

    Métivier R, Penot G, Hubner M R, Reid G, Brand H, Kos M, Gannon F 2003 Cell 115 751Google Scholar

    [65]

    Kang Z, Pirskanen A, Janne O A, Palvimo J J 2002 J. Biol. Chem. 277 48366Google Scholar

    [66]

    Liu Y, Xia X, Fondell J D, Yen P M 2006 Mol. Endocrinol. 20 483Google Scholar

    [67]

    Shang Y, Hu X, DiRenzo J, Lazar M A, Brown M 2000 Cell 103 843Google Scholar

    [68]

    Becker M, Baumann C, John S, Walker D A, Vigneron M, McNally J G, Hager G L 2002 EMBO Rep. 3 1188Google Scholar

    [69]

    Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy S M, Phair R D, Singer R H 2007 Nat. Struct. Mol. Biol. 14 796Google Scholar

    [70]

    Johnson T A, Elbi C, Parekh B S, Hager G L, John S 2008 Mol. Biol. Cell 19 3308Google Scholar

    [71]

    Catez F, Ueda T, Bustin M 2006 Nat. Struct. Mol. Biol. 13 305Google Scholar

    [72]

    Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi M E, Natoli G 2006 EMBO J. 25 798Google Scholar

    [73]

    Reid G, Hubner M R, Métivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F 2003 Mol. Cell 11 695Google Scholar

    [74]

    Hager G L, McNally J G, Misteli T 2009 Mol. Cell 35 741Google Scholar

    [75]

    Reid G, Gallais R, Métivier R 2009 Int. J. Biochem. Cell Biol. 41 155Google Scholar

    [76]

    Wang Y, Liu F, Li J, Wang W 2014 J. R. Soc. Interface 11 20140253Google Scholar

    [77]

    Lemaire V, Lee C F, Lei J, Métivier R, Glass L 2006 Phys. Rev. Lett. 96 198102Google Scholar

    [78]

    Krasnov A N, Mazina M Y, Nikolenko J V, Vorobyeva N E 2016 Cell Biosci. 6 15Google Scholar

    [79]

    Gourse R L, Landick R 2012 Cell 148 635Google Scholar

    [80]

    Lenstra T L, Rodriguez J, Chen H, Larson D R 2016 Annu. Rev. Biophys. 45 25Google Scholar

    [81]

    Raj A, van Oudenaarden A 2008 Cell 135 216Google Scholar

    [82]

    Hocine S, Raymond P, Zenklusen D, Chao J A, Singer R H 2013 Nat. Methods 10 119Google Scholar

    [83]

    Lim F, Peabody D S 2002 Nucleic Acids Res. 30 4138Google Scholar

    [84]

    Chubb J R, Trcek T, Shenoy S M, Singer R H 2006 Curr. Biol. 16 1018Google Scholar

    [85]

    Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M 1998 Mol. Cell 2 437Google Scholar

    [86]

    Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J M, Robert M C, Capozi S, Chouaib R, Backer V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E 2016 Nat. Commun. 7 12248Google Scholar

    [87]

    Fukaya T, Lim B, Levine M 2016 Cell 166 358Google Scholar

    [88]

    Corrigan A M, Tunnacliffe E, Cannon D, Chubb J R 2016 eLife 5 e13051Google Scholar

    [89]

    Chong S, Chen C, Ge H, Xie X S 2014 Cell 158 314Google Scholar

    [90]

    Suter D M, Molina N, Gatfield D, Schneider K, Schibler U, Naef F 2011 Science 332 472Google Scholar

    [91]

    Tripathi T, Chowdhury D 2008 EPL 84 68004Google Scholar

    [92]

    Golding I, Paulsson J, Zawilski S M, Cox E C 2005 Cell 123 1025Google Scholar

    [93]

    Raj A, Peskin C S, Tranchina D, Vargas D Y, Tyagi S 2006 PLoS Biol. 4 e309Google Scholar

    [94]

    Sanchez A, Golding I 2013 Science 342 1188Google Scholar

    [95]

    Wang Y, Ni T, Wang W, Liu F 2019 Biol. Rev. 94 248Google Scholar

    [96]

    Tunnacliffe E, Chubb J R 2020 Trends Genet. 36 288Google Scholar

    [97]

    Yao J 2017 J. Mol. Biol. 429 14Google Scholar

    [98]

    Nicolas D, Phillips N E, Naef F 2017 Mol. Biosyst. 13 1280Google Scholar

    [99]

    Hnisz D, Shrinivas K, Young R A, Chakraborty A K, Sharp P A 2017 Cell 169 13Google Scholar

    [100]

    Chubb J R 2017 Wiley Interdiscip. Rev.-Dev. Biol. 6 e284Google Scholar

    [101]

    Bressloff P C 2017 J. Phys. A-Math. Theor. 50 133001Google Scholar

    [102]

    Reinius B, Sandberg R 2015 Nat. Rev. Genet. 16 653Google Scholar

    [103]

    Munsky B, Neuert G 2015 Phys. Biol. 12 045004Google Scholar

    [104]

    Munsky B, Fox Z, Neuert G 2015 Methods 85 12Google Scholar

    [105]

    Boeger H, Shelansky R, Patel H, Brown C R 2015 Genes 6 469Google Scholar

    [106]

    Skupsky R, Burnett J C, Foley J E, Schaffer D V, Arkin A P 2010 PLoS Comput. Biol. 6 e1000952Google Scholar

    [107]

    Dar R D, Razooky B S, Singh A, Trimeloni T V, McCollum J M, Cox C D, Simpson M L, Weinberger L S 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17454Google Scholar

    [108]

    Molina N, Suter D M, Cannavo R, Zoller B, Gotic I, Naef F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 20563Google Scholar

    [109]

    Corrigan A M, Chubb J R 2014 Curr. Biol. 24 205Google Scholar

    [110]

    Giri R, Papadopoulos D K, Posadas D M, Potluri H K, Tomancak P, Mani M, Carthew R W 2020 eLife 9 e53638Google Scholar

    [111]

    Lammers N C, Galstyan V, Reimer A, Medin S A, Wiggins C H, Garcia H G 2020 Proc. Natl. Acad. Sci. U.S.A. 117 836Google Scholar

    [112]

    Tian X, Huang B, Zhang X P, Lu M, Liu F, Onuchic J N, Wang W 2017 Proc. Natl. Acad. Sci. U.S.A. 114 5337Google Scholar

    [113]

    Ko M S 1992 Bioessays 14 341Google Scholar

    [114]

    Sanchez A, Choubey S, Kondev J 2013 Methods 62 13Google Scholar

    [115]

    Peccoud J, Ycart B 1995 Theor. Popul. 48 222Google Scholar

    [116]

    Pedraza J M, Paulsson J 2008 Science 319 339Google Scholar

    [117]

    Freeman B C, Yamamoto K R 2002 Science 296 2232Google Scholar

    [118]

    Stavreva D A, Muller W G, Hager G L, Smith C L, McNally J G 2004 Mol. Cell. Biol. 24 2682Google Scholar

    [119]

    Wang Y, Qi J, Shao J, Tang X Q 2020 Biology 9 339Google Scholar

  • [1] Li Duo-Duo, Zhang Song. Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine. Acta Physica Sinica, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [2] Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting. Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model. Acta Physica Sinica, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [3] Hao Dan-Hui, Kong Fan-Jie, Jiang Gang. Structure and potential energy function of PuNO molecules. Acta Physica Sinica, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [4] Jiao Shang-Bin, Ren Chao, Huang Wei-Chao, Liang Yan-Ming. Parameter-induced stochastic resonance in multi-frequency weak signal detection with stable noise. Acta Physica Sinica, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [5] Peng Hao, Zhong Su-Chuan, Tu Zhe, Ma Hong. Stochastic resonance of over-damped bistable system driven by chirp signal and Gaussian white noise. Acta Physica Sinica, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [6] Huang Duo-Hui, Wang Fan-Hou, Wan Ming-Jie, Jiang Gang. SnS molecular structure and properties under external electric field. Acta Physica Sinica, 2013, 62(1): 013104. doi: 10.7498/aps.62.013104
    [7] Xu Yong-Qiang, Peng Wei-Cheng, Wu Hua. Structures and potential energy functions of the ground states of YH,YD,YT molecules. Acta Physica Sinica, 2012, 61(4): 043105. doi: 10.7498/aps.61.043105
    [8] Zhang Mao-Ping, Zhong Wei-Rong, Ai Bao-Quan. Thermal rectification of asymmetric double-stranded molecular structure. Acta Physica Sinica, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [9] Chen Jun, Meng Da-Qiao, Du Ji-Guang, Jiang Gang, Gao Tao, Zhu Zheng-He. Molecular structures and molecular spectra for plutonium oxides. Acta Physica Sinica, 2010, 59(3): 1658-1664. doi: 10.7498/aps.59.1658
    [10] Han Xiao-Qin, Jiang Li-Juan, Liu Yu-Fang. Structure and potential energy function of MgB and MgB2(1A1). Acta Physica Sinica, 2010, 59(7): 4542-4546. doi: 10.7498/aps.59.4542
    [11] Zheng Yu-Jun, Zhang Zhao-Yu, Zhang Xi-Zhong. Similarity of high-order cumulants for single molecule kinetics. Acta Physica Sinica, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [12] Yang Ze-Jin, Gao Qing-He, Guo Yun-Dong, Cheng Xin-Lu, Zhu Zheng-He, Yang Xiang-Dong. The structure and potential energy function of SiOH and HSiO. Acta Physica Sinica, 2008, 57(3): 1587-1591. doi: 10.7498/aps.57.1587
    [13] Yang Ze-Jin, Gao Qing-He, Guo Yun-Dong, Cheng Xin-Lu, Zhu Zheng-He, Yang Xiang-Dong. The structure and potential energy function of AlOH(CS,X1A′). Acta Physica Sinica, 2008, 57(3): 1582-1586. doi: 10.7498/aps.57.1582
    [14] Kong Fan-Jie, Du Ji-Guang, Jiang Gang. The structure and potential energy function of PdCO molecule. Acta Physica Sinica, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [15] Yang Ze-Jin, Gao Qing-He, Guo Yun-Dong, Cheng Xin-Lu, Zhu Zheng-He, Yang Xiang-Dong. The structure and potential energy function of LiO2(C2V,X2A2) molecule. Acta Physica Sinica, 2007, 56(10): 5723-5726. doi: 10.7498/aps.56.5723
    [16] Xu Mei, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Structures and potential energy functions of the ground states of BeH, BeD, BeT molecules. Acta Physica Sinica, 2007, 56(2): 769-773. doi: 10.7498/aps.56.769
    [17] Yan Shi-Ying. The molecular structure and potential energy function of the ground state of BH2 molecule. Acta Physica Sinica, 2006, 55(7): 3408-3412. doi: 10.7498/aps.55.3408
    [18] Xiong Bi-Tao, Meng Da-Qiao, Xue Wei-Dong, Zhu Zheng-He, Jiang Gang, Wang Hong-Yan. The thermodynamical calculations of uranium-water vapor system. Acta Physica Sinica, 2003, 52(7): 1617-1623. doi: 10.7498/aps.52.1617
    [19] Xue Wei-Dong, Wang Hong-Yan, Zhu Zheng-He, Zhang Guang-Feng, Zhou Le-Xi, Chen Chang-An, Sun Ying. . Acta Physica Sinica, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [20] LUO DE-LI, SUN YING, LIU XIAO-YA, JIANG GANG, MENG DA-QIAO, ZHU ZHENG-HE. STRUCTURE AND POTENTIAL ENERGY FUNCTION INVESTIGATION ON UH AND UH2 MOLECULES. Acta Physica Sinica, 2001, 50(10): 1896-1901. doi: 10.7498/aps.50.1896
Metrics
  • Abstract views:  8025
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2020
  • Accepted Date:  11 November 2020
  • Available Online:  08 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回
Baidu
map