-
A novel triple-walled carbon nanotube (TWCNT) screwing oscillator is proposed, in which screwing motion signals of both inner tube and middle tube are outputted simultaneously by applying an axial excitation to the inner tube and a rotating excitation to the middle tube. The molecular dynamic method is used to investigate the oscillatory behavior of the TWCNT oscillator under screwing motion. In the simulation process, the fixed outer tube acts as the oscillator stator, while the inner tube and the middle tube keep free oscillation after applying a certain initial excitation respectively. The simulation results show that the rotation frequency of the inner tube increases with the increase of the initial rotation excitation frequency of the middle tube when the inner tube is pulled out at a certain distance, and eventually tends to a stable value slightly lower than the rotation excitation. When the applied initial rotation frequency is within 400 GHz, the self-excited stable ration frequency (
$ {\omega _{\rm{I}}}$ ) of the inner tube can be expressed as a function of the initial rotation excitation frequency ($ {\omega _{{\rm{M}}0}}$ ),$ {\omega _{\rm{I}}} = 46{{\rm{e}}^{0.0045{\omega _{{\rm{M0}}}}}}$ . Although increasing the initial rotation excitation frequency can enhance the rotation frequency of the inner tube, as the initial rotation frequency of the middle tube increases, the axial performance of the inner tube is degraded and the unstable oscillations is aggravated. At the same time, the stability of the axial oscillation of the middle tube is related to the frequency of the initial rotational excitation applied to it. Too high an initial rotational frequency will not only increase the off-axis rocking motion distance, resulting in a degradation in axial oscillation performance, but also the rotation loss will increase as the initial rotation frequency increases. Therefore, a reasonable control of the amplitude of the initial rotation frequency is the key to designing a low-loss TWCNTs screwing oscillator.-
Keywords:
- triple-walled carbon nanotube /
- screwing motion /
- pull-rotate coupling /
- molecular dynamics
[1] Iijima S 1991 Nature 354 56
Google Scholar
[2] Zou J, Ji B, Feng X Q, Gao H J 2006 Nano Lett. 6 430
Google Scholar
[3] Huang Z 2008 Nanotechnology 19 045701
Google Scholar
[4] Bailey S W D, Amanatidis I, Lambert C J 2008 Phys. Rev. Lett. 100 256802
Google Scholar
[5] Yang W D, Wang X, Fang C Q 2015 Composites Part B 82 143
Google Scholar
[6] Chiu H Y, Hung P, Postma H W C, Bockrath M 2008 Nano Lett. 8 4342
Google Scholar
[7] Qin Z, Zou J, Feng X Q 2008 J. Comput. Theor. Nanosci. 5 1403
Google Scholar
[8] Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvão D S 2004 Nanotechnology 15 S184
Google Scholar
[9] Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504
Google Scholar
[10] Cumings J, Zettl A 2000 Science 289 602
Google Scholar
[11] Zheng Q, Liu J Z, Jiang Q 2002 Phys. Rev. B 65 245409
Google Scholar
[12] Cai K, Yin H, Qin Q H, Li Y 2014 Nano Lett. 14 2558
Google Scholar
[13] Servantie J, Gaspard P 2006 Phys. Rev. Lett. 97 13831
[14] Cook E H, Buehler M J, Spakovszky Z S 2013 J. Mech. Phys. Solids. 61 652
Google Scholar
[15] Zhao Y, Ma C C, Chen G, Jiang Q 2003 Phys. Rev. Lett. 91 175504
Google Scholar
[16] Guo W L, Guo Y F, Gao H J, Zheng Q S 2003 Phys. Rev. Lett. 91 125501
Google Scholar
[17] Kang J W, Lee J H 2008 Nanotechnology 19 285704
Google Scholar
[18] Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 98 014301
Google Scholar
[19] Liu P, Zhang Y W, Lu C J 2006 Carbon 44 27
Google Scholar
[20] Chen L, Jiang W G, Zou H, Feng X Q, Qin Q H, Li X 2019 Phys. Lett. A. 383 2309
Google Scholar
[21] Lin Y W, Jiang W G, Qin Q H, Chen Y J 2019 Appl. Phys. Express. 12 065001
Google Scholar
[22] Voter A F, Doll J D 1984 J. Chem. Phys. 80 5832
Google Scholar
[23] Harrison J A, White C T, Colton R J, Brenner D W 1992 Phys. Rev. B. 46 9700
Google Scholar
[24] Brenner D W, Shenderove O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783
Google Scholar
[25] Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348
Google Scholar
[26] Doll J D 1982 J. Chem. Phys. 77 479
Google Scholar
[27] Lammps molecular dynamics simulator, http://lammps.sandia.gov, 2014 [2020-5-31]
[28] 邹航2019 硕士学位论文 (南昌: 南昌航空大学)
Zhou H 2019 M. S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)
-
图 5 内管的轴向振荡 (a) NVE过程中不同
${\omega _{{\rm{M0}}}}$ 下的内管质心位置变化曲线; (b)内管平均振荡频率${f_{{\rm{ZI}}}}$ 随${\omega _{{\rm{M0}}}}$ 的变化Figure 5. Axial oscillations of the inner tube: (a) Changes of the position of mass center of inner tubes(MCITs) with different
${\omega _{{\rm{M0}}}}$ in the NVE process; (b)${f_{{\rm{ZI}}}}$ with respect to${\omega _{{\rm{M0}}}}$ .表 1 碳纳米管的几何参数
Table 1. Geometric parameters of the carbon nanotubes.
碳管手性(n, m)@(n, m)@(n, m) 管长/nm 管半径/nm 管间距/nm 原子数 (9, 9)@(24, 0) @(19, 19) 6/6/4 1.220/1.879/2.576 0.329/0.349 864/1344/1216 -
[1] Iijima S 1991 Nature 354 56
Google Scholar
[2] Zou J, Ji B, Feng X Q, Gao H J 2006 Nano Lett. 6 430
Google Scholar
[3] Huang Z 2008 Nanotechnology 19 045701
Google Scholar
[4] Bailey S W D, Amanatidis I, Lambert C J 2008 Phys. Rev. Lett. 100 256802
Google Scholar
[5] Yang W D, Wang X, Fang C Q 2015 Composites Part B 82 143
Google Scholar
[6] Chiu H Y, Hung P, Postma H W C, Bockrath M 2008 Nano Lett. 8 4342
Google Scholar
[7] Qin Z, Zou J, Feng X Q 2008 J. Comput. Theor. Nanosci. 5 1403
Google Scholar
[8] Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvão D S 2004 Nanotechnology 15 S184
Google Scholar
[9] Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504
Google Scholar
[10] Cumings J, Zettl A 2000 Science 289 602
Google Scholar
[11] Zheng Q, Liu J Z, Jiang Q 2002 Phys. Rev. B 65 245409
Google Scholar
[12] Cai K, Yin H, Qin Q H, Li Y 2014 Nano Lett. 14 2558
Google Scholar
[13] Servantie J, Gaspard P 2006 Phys. Rev. Lett. 97 13831
[14] Cook E H, Buehler M J, Spakovszky Z S 2013 J. Mech. Phys. Solids. 61 652
Google Scholar
[15] Zhao Y, Ma C C, Chen G, Jiang Q 2003 Phys. Rev. Lett. 91 175504
Google Scholar
[16] Guo W L, Guo Y F, Gao H J, Zheng Q S 2003 Phys. Rev. Lett. 91 125501
Google Scholar
[17] Kang J W, Lee J H 2008 Nanotechnology 19 285704
Google Scholar
[18] Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 98 014301
Google Scholar
[19] Liu P, Zhang Y W, Lu C J 2006 Carbon 44 27
Google Scholar
[20] Chen L, Jiang W G, Zou H, Feng X Q, Qin Q H, Li X 2019 Phys. Lett. A. 383 2309
Google Scholar
[21] Lin Y W, Jiang W G, Qin Q H, Chen Y J 2019 Appl. Phys. Express. 12 065001
Google Scholar
[22] Voter A F, Doll J D 1984 J. Chem. Phys. 80 5832
Google Scholar
[23] Harrison J A, White C T, Colton R J, Brenner D W 1992 Phys. Rev. B. 46 9700
Google Scholar
[24] Brenner D W, Shenderove O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783
Google Scholar
[25] Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348
Google Scholar
[26] Doll J D 1982 J. Chem. Phys. 77 479
Google Scholar
[27] Lammps molecular dynamics simulator, http://lammps.sandia.gov, 2014 [2020-5-31]
[28] 邹航2019 硕士学位论文 (南昌: 南昌航空大学)
Zhou H 2019 M. S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)
Catalog
Metrics
- Abstract views: 5647
- PDF Downloads: 57
- Cited By: 0