Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale

Chai Yu Zhang Ni Liu Jie Yin Ning Liu Shu-Lin Zhang Jing-Yuan

Citation:

Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale

Chai Yu, Zhang Ni, Liu Jie, Yin Ning, Liu Shu-Lin, Zhang Jing-Yuan
PDF
HTML
Get Citation
  • Based on the principle of micro-scale discharge, the micro-nano ionization gas sensor has the characteristics of fast response, high precision and easy integration. It is expected to achieve rapid and accurate detection of gas. At present, there is a lack of systematic analysis of the inter-polar discharge process of the new sensor. This paper uses the fluid-chemical dynamics methodology to create a 2D space discharge model of the N2-O2 mixed gas at the micron gap and the nano-tip field in ambient atmosphere at normal temperature and pressure. Meanwhile, by analyzing the mutual coupling between the space electron transport process, the discharge current density, and the space electric field strength, the paper clarifies the dynamics of space discharge in the field, improves how internal discharges work in such micro-nano structured ionization gas sensors, and analyzes the pattern of influence of different polar distances on space discharges. The results show that the electric field in the space remains constant as the production and consumption of positive and negative ions reaches a dynamic equilibrium in the field. It is reflected in the field strengthening effect of positive ion groups to the cathode plate and of negative ion groups to the anode plate, as well as in the field weakening effect between positive and negative ion groups. The resulting stable and strong electric field of the cathode makes sure that space discharge is maintained, and the discharge current density stabilizes. Initially, as the polar distance decreases gradually, the electric field strength between the poles and plates increases. It plays a leading role in the accumulation of electron energy and in the increase in the number density of electrons, thus leading to the increase of the output current density up to the peak value when the polar distance D = 50 μm. As the polar distance decreases, the field strength between the poles and plates increases. Despite that, when electrons accumulate energy up to such a level that gas molecules can be ionized, the necessary movement distance and the distance required to increase the number density of electrons decreases. As a result, the degree of ionization weakens, and the field strengthening effect of positive ions decreases. In other words, the increment of the field strength caused by positive ions at the tip decreases, and in turn, the discharge current density decreases. This pattern serves as a theoretical support in the optimization of the micro-nano structured ionization gas sensors.
      Corresponding author: Zhang Jing-Yuan, jyzhang@xust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51777167, 51604217, 11974275), the China Postdoctoral Science Foundation (Grant No. 2018M643811XB), and the Natural Science Foundation of Education Bureau of Shaanxi Province, China (Grant No. 19JK0529)
    [1]

    谢云龙, 钟国, 杜高辉 2012 化学学报 70 1221Google Scholar

    Xie Y L, Zhong G, Du G H 2012 Acta Chim. Sinica 70 1221Google Scholar

    [2]

    常进, 张为军, 刘卓峰, 陈兴宇 2016 电子元件与材料 35 15Google Scholar

    Chang J, Zhang W J, Liu Z F, Chen X Y 2016 Electr. Comp. Mater. 35 15Google Scholar

    [3]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 171Google Scholar

    [4]

    刘凯, 邹德福, 廉五州, 马丽铃, 马丽敏, 陈志东 2016 仪表技术与传感器 1 10Google Scholar

    Liu K, Zou D F, Lian W Z, Ma L L, Ma L M, Chen Z D 2016 Instr. Techn. Sensor 1 10Google Scholar

    [5]

    张一茗, 袁欢, 穆广祺, 宋亚凯, 张文涛, 王小华 2016 高压电器 52 134Google Scholar

    Zhang Y M, Yuan H, Mu G Q, Song Y K, Zhang W T, Wang X H 2016 High Volt. Appar. 52 134Google Scholar

    [6]

    Trichel G W 1938 Phys. Rev. 54 1078Google Scholar

    [7]

    廖瑞金, 刘康淋, 伍飞飞, 杨丽君, 周之 2014 高电压技术 40 965Google Scholar

    Liao R J, Liu K L, Wu F F, Yang L J, Zhou Z 2014 High Volt. Eng. 40 965Google Scholar

    [8]

    郑殿春, 夏云双, 赵大伟, 陈春天, 王佳 2013 电机与控制学报 17 75Google Scholar

    Zheng D C, Xia Y S, Zhao D W, Chen C T, Wang J 2013 Electr. Mach. Contrl. 17 75Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li Xin, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [11]

    柴钰, 弓丽萍, 张晶园, 赵永秀 2019 电工技术学报 34 4870Google Scholar

    Chai Y, Gong L P, Zhang J Y, Zhao Y X 2019 Trans. Chin. Electrotechnical Soc. 34 4870Google Scholar

    [12]

    Yang H S, Tan Z M, Liu Y, Ma Z X, Zhang L 2013 IEEE T. Nanotechnol. 12 1037Google Scholar

    [13]

    Nebol’sin V A, Spiridonov B A, Dunaev A I, Bogdanovich E V 2016 Inorg. Mater. 53 595Google Scholar

    [14]

    程永红, 孟国栋, 董承业 2017 电工技术学报 32 13Google Scholar

    Cheng Y H, Meng G D, Dong C Y 2017 Trans. Chin. Electrotechnical Soc. 32 13Google Scholar

    [15]

    孔迪, 李建周, 张昊, 陈昶 2014 电子设计工程 22 127Google Scholar

    Kong D, Li J Z, Zhang H, Chei C 2014 Int. Electr. Elem. 22 127Google Scholar

    [16]

    廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 61 245201Google Scholar

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201Google Scholar

    [17]

    周雪会, 陈登义, 陈则煌 2016 陶瓷避雷器 5 152Google Scholar

    Zhou X H, Chen D Y, Chen Z H 2016 Insulators and Surge Arresters 5 152Google Scholar

    [18]

    陈硕,张金英,杨天辰,李璐,郑天祥 2017 智能电网 5 812Google Scholar

    Chen S, Zhang J Y, Yang T C, Li L, Zheng T X 2017 Smart Grid 5 812Google Scholar

    [19]

    李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞 2012 60 125204

    Li X C, Yuan N, Jia P Y, Chang Y Y, Ji Y F 2012 Acta Phys. Sin. 60 125204

    [20]

    李维虎, 张锦, 万保权, 何旺龄 2018 高压电器 54 0129Google Scholar

    Li W H, Zhang J, Wan B Q, He W L 2018 High Volt. Appar. 54 0129Google Scholar

    [21]

    Georghiou G E, Papadakis A P, Morroe R, Metaxas A C 2005 Appl. Phys. 38 303Google Scholar

    [22]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 172

    [23]

    Akishev Y S, Grushin M E, Karal’nik V B, Trushkin N I 2000 Plasma Phys. Rep. 27 532

    [24]

    Morrow R 1991 IEEE T. Electr. Insul. 26 398Google Scholar

    [25]

    Yin H, Zhang B, He J L, Wang W Z 2014 Phys. Plasmas 21 032116Google Scholar

    [26]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第243—254页

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp243–254

    [27]

    徐翱,金大志,王亚军,陈 磊,谈效华 2020 高压电技术 46 715Google Scholar

    Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Eng. 46 715Google Scholar

    [28]

    伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之 2013 62 115201Google Scholar

    Wu F F, Liao R J, Yang L J, Liu X H, Wang K, Zhou Z 2013 Acta Phys. Sin. 62 115201Google Scholar

    [29]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201Google Scholar

    [30]

    刘学悫 1980 阴极电子学 (北京: 科学出版社) 第244—273

    Liu X Q 1980 Cathode electronics (Beijing: Science Press) pp244–273

  • 图 1  放电原理图

    Figure 1.  Discharge schematic diagram.

    图 2  不同时刻的电子密度分布图 (a) t1 = 0.1 ns; (b) t2 = 0.3 ns; (c) t3 = 1 ns; (d) t4 = 100 ns; (e) t5 = 150 ns; (f) t6 = 200 ns

    Figure 2.  Electron density maps at different times: (a) t1 = 0.1 ns; (b) t2 = 0.3 ns; (c) t3 = 1 ns; (d) t4 = 100 ns; (e) t5 = 150 ns; (f) t6 = 200 ns.

    图 3  中轴线上不同位置处电场强度随时间的变化曲线

    Figure 3.  Curves of electric field strength with time at different positions on the central axis.

    图 4  负极板上外加电压随时间的变化曲线

    Figure 4.  Time-varying curve of applied voltage on the negative plate.

    图 5  不同时刻正负离子密度轴向分布 (a) t1 = 100 ns; (b) t2 = 140 ns; (c) t3 = 150 ns; (d) t4 = 200 ns

    Figure 5.  Axial distributions of positive and negative ion density at different times: (a) t1 = 100 ns; (b) t2 = 140 ns; (c) t3 = 150 ns; (d) t4 = 200 ns

    图 6  放电电流密度随时间的变化曲线

    Figure 6.  Curve of discharge current density with time.

    图 7  尖端处的电场强度随时间的变化曲线

    Figure 7.  Curve of the electric field strength at the tip with time.

    图 9  不同极间距下的放电电流密度 (a) 所有时间; (b) 稳定时刻

    Figure 9.  The intensity of the electric field at the different poles: (a) All the time; (b) stable time.

    图 8  不同极间距下尖端处电场强度随时间的变化曲线

    Figure 8.  Variation curve of electric field strength with time at the tip under different pole spacing.

    图 10  不同极间距下尖端处的场强增量

    Figure 10.  The increment of field strength at the tips of different pole spaces.

    表 1  N2-O2等离子体化学反应

    Table 1.  N2-O2 plasma chemical reactions.

    类型序号反应式反应速率参考文献
    电子碰撞反应R1${\rm{e}} + {{\rm{N}}_{\rm{2}}} \to {\rm{e}} +{\rm{ e}} +{\rm{ N}}_{\rm{2}}^{{ + }} $f (ε)[29]
    R2${\rm{e}} + {{\rm{O}}_2} \to {\rm{e}} + {\rm{e}} + {\rm{O}}_2^ + $f (ε)[29]
    R3${\rm{e}} + {\rm{O}}_4^ + \to 2{{\rm{O}}_2}$1.4 × 10–42(300/Te)0.5 mol·s–1[29]
    R4${\rm{e}} + {\rm{O}}_2^ + \to 2{\rm{O}}$2.0 × 10–13(300/Te) mol·s–1[29]
    R5${\rm{e}} + 2{{\rm{O}}_2} \to {{\rm{O}}_2} + {\rm{O}}_2^ - $2.0 × 10–41(300/Te) mol·s–1·m–6[29]
    重粒子反应R6${\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{N}}_{\rm{2}}} \to {\rm{O}}_{\rm{4}}^{{ + }}{{ + }}{{\rm{N}}_2}$2.4 × 10–42 mol·s–1·m–6[29]
    R7${{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{O}}_{\rm{2}}} \to {\rm{O}}_{\rm{4}}^{{ + }}{{ + }}{{\rm{N}}_2}$1.0 × 10–15 mol·s–1·m–3[29]
    R8${{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{N}}_{\rm{2}}} \to {\rm{O}}_2^{{ + }}{{ + 2}}{{\rm{N}}_{\rm{2}}}$4.3 × 10–10 mol·s–1·m–3[29]
    R9${\rm{O}}_{\rm{2}}^{{ + }}{{ + 2}}{{\rm{N}}_{\rm{2}}} \to {{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{N}}_{\rm{2}}}$9.0 × 10–43 mol·s–1·m–6[29]
    R10${{\rm{O}}_{\rm{2}}} +{\rm{ N}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}} +{\rm{ O}}_{\rm{2}}^{{ + }}$6.0 × 10–17 mol·s–1·m–3[29]
    R11${\rm{N}}_{\rm{2}}^{{ + }}{{ + }}{{\rm{N}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}} + {\rm{N}}_{\rm{4}}^{{ + }}$5.0 × 10–41 mol·s–1·m–6[29]
    R12${{\rm{O}}_{\rm{2}}}+ {\rm{ N}}_{\rm{4}}^{{ + }} \to {\rm{2}}{{\rm{N}}_{\rm{2}}}+ {\rm{ O}}_{\rm{2}}^{{ + }}$2.5 × 10–16 mol·s–1·m–3[29]
    R13${\rm{2}}{{\rm{N}}_{\rm{2}}}+ {\rm{ N}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}}+ {\rm{ N}}_{\rm{4}}^{{ + }}$5.0 × 10–41 mol·s–1·m–6[29]
    R14${\rm{O}}_{\rm{2}}^{{ + }}+ {\rm{ 2}}{{\rm{O}}_{\rm{2}}} \to {\rm{O}}_{\rm{4}}^{{ + }}{{ + }}{{\rm{O}}_{\rm{2}}}$2.4 × 10–42 mol·s–1·m–6[29]
    R15${\rm{O}}_{\rm{4}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - \to {\rm{3}}{{\rm{O}}_{\rm{2}}}$1.0 × 10–13 mol·s–1·m–3[29]
    R16${\rm{O}}_{\rm{4}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{N}}_2} \to {\rm{3}}{{\rm{O}}_{\rm{2}}} + {{\rm{N}}_{\rm{2}}}$2.0 × 10–17 mol·s–1·m–6[29]
    R17${\rm{O}}_{\rm{4}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{O}}_{\rm{2}}} \to {\rm{3}}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}}$2.0 × 10–17 mol·s–1·m–6[29]
    R18${\rm{O}}_{\rm{2}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{O}}_{\rm{2}}} \to {\rm{2}}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}}$22.0 × 10–17 mol·s–1·m–6[29]
    R19${\rm{O}}_{\rm{2}}^{{ + }}+ {\rm{ O}}_{\rm{2}}^ - {{ + }}{{\rm{N}}_{\rm{2}}} \to {\rm{2}}{{\rm{O}}_{\rm{2}}}{{ + }}{{\rm{N}}_{\rm{2}}}$2.0 × 10–17 mol·s–1·m–6[29]
    DownLoad: CSV

    表 2  表面反应

    Table 2.  Surface reactions.

    序号反应式针电极(阴极)板电极(阳极)
    γεi/eVγεi/eV
    R20${\rm{e}} + {\rm{N}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}}$0.05400
    R21${\rm{e }}+{{\rm{N}}_{\rm{2}}}{\rm{O}}_{\rm{2}}^{{ + }} \to {{\rm{N}}_{\rm{2}}}{{ + }}{{\rm{O}}_{\rm{2}}}$0.05400
    R22${\rm{e}} + {\rm{N}}_{\rm{4}}^{{ + }} \to {\rm{2}}{{\rm{N}}_{\rm{2}}}$0.05400
    R23${\rm{e}} + {\rm{O}}_{\rm{2}}^{{ + }} \to {{\rm{O}}_{\rm{2}}}$0.05400
    R24${\rm{e}} +{\rm{ O}}_{\rm{4}}^{{ + }} \to 2{{\rm{O}}_{\rm{2}}}$0.05400
    R25${\rm{e}} +{\rm{ O}}_{\rm{2}}^{{ - }} \to {{\rm{O}}_{\rm{2}}}$0000
    DownLoad: CSV
    Baidu
  • [1]

    谢云龙, 钟国, 杜高辉 2012 化学学报 70 1221Google Scholar

    Xie Y L, Zhong G, Du G H 2012 Acta Chim. Sinica 70 1221Google Scholar

    [2]

    常进, 张为军, 刘卓峰, 陈兴宇 2016 电子元件与材料 35 15Google Scholar

    Chang J, Zhang W J, Liu Z F, Chen X Y 2016 Electr. Comp. Mater. 35 15Google Scholar

    [3]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 171Google Scholar

    [4]

    刘凯, 邹德福, 廉五州, 马丽铃, 马丽敏, 陈志东 2016 仪表技术与传感器 1 10Google Scholar

    Liu K, Zou D F, Lian W Z, Ma L L, Ma L M, Chen Z D 2016 Instr. Techn. Sensor 1 10Google Scholar

    [5]

    张一茗, 袁欢, 穆广祺, 宋亚凯, 张文涛, 王小华 2016 高压电器 52 134Google Scholar

    Zhang Y M, Yuan H, Mu G Q, Song Y K, Zhang W T, Wang X H 2016 High Volt. Appar. 52 134Google Scholar

    [6]

    Trichel G W 1938 Phys. Rev. 54 1078Google Scholar

    [7]

    廖瑞金, 刘康淋, 伍飞飞, 杨丽君, 周之 2014 高电压技术 40 965Google Scholar

    Liao R J, Liu K L, Wu F F, Yang L J, Zhou Z 2014 High Volt. Eng. 40 965Google Scholar

    [8]

    郑殿春, 夏云双, 赵大伟, 陈春天, 王佳 2013 电机与控制学报 17 75Google Scholar

    Zheng D C, Xia Y S, Zhao D W, Chen C T, Wang J 2013 Electr. Mach. Contrl. 17 75Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li Xin, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [11]

    柴钰, 弓丽萍, 张晶园, 赵永秀 2019 电工技术学报 34 4870Google Scholar

    Chai Y, Gong L P, Zhang J Y, Zhao Y X 2019 Trans. Chin. Electrotechnical Soc. 34 4870Google Scholar

    [12]

    Yang H S, Tan Z M, Liu Y, Ma Z X, Zhang L 2013 IEEE T. Nanotechnol. 12 1037Google Scholar

    [13]

    Nebol’sin V A, Spiridonov B A, Dunaev A I, Bogdanovich E V 2016 Inorg. Mater. 53 595Google Scholar

    [14]

    程永红, 孟国栋, 董承业 2017 电工技术学报 32 13Google Scholar

    Cheng Y H, Meng G D, Dong C Y 2017 Trans. Chin. Electrotechnical Soc. 32 13Google Scholar

    [15]

    孔迪, 李建周, 张昊, 陈昶 2014 电子设计工程 22 127Google Scholar

    Kong D, Li J Z, Zhang H, Chei C 2014 Int. Electr. Elem. 22 127Google Scholar

    [16]

    廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 61 245201Google Scholar

    Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201Google Scholar

    [17]

    周雪会, 陈登义, 陈则煌 2016 陶瓷避雷器 5 152Google Scholar

    Zhou X H, Chen D Y, Chen Z H 2016 Insulators and Surge Arresters 5 152Google Scholar

    [18]

    陈硕,张金英,杨天辰,李璐,郑天祥 2017 智能电网 5 812Google Scholar

    Chen S, Zhang J Y, Yang T C, Li L, Zheng T X 2017 Smart Grid 5 812Google Scholar

    [19]

    李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞 2012 60 125204

    Li X C, Yuan N, Jia P Y, Chang Y Y, Ji Y F 2012 Acta Phys. Sin. 60 125204

    [20]

    李维虎, 张锦, 万保权, 何旺龄 2018 高压电器 54 0129Google Scholar

    Li W H, Zhang J, Wan B Q, He W L 2018 High Volt. Appar. 54 0129Google Scholar

    [21]

    Georghiou G E, Papadakis A P, Morroe R, Metaxas A C 2005 Appl. Phys. 38 303Google Scholar

    [22]

    Ashish M, Nikhil K, Eric L, Wei B Q, Pulickel M A 2003 Nature 424 172

    [23]

    Akishev Y S, Grushin M E, Karal’nik V B, Trushkin N I 2000 Plasma Phys. Rep. 27 532

    [24]

    Morrow R 1991 IEEE T. Electr. Insul. 26 398Google Scholar

    [25]

    Yin H, Zhang B, He J L, Wang W Z 2014 Phys. Plasmas 21 032116Google Scholar

    [26]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第243—254页

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp243–254

    [27]

    徐翱,金大志,王亚军,陈 磊,谈效华 2020 高压电技术 46 715Google Scholar

    Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Eng. 46 715Google Scholar

    [28]

    伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之 2013 62 115201Google Scholar

    Wu F F, Liao R J, Yang L J, Liu X H, Wang K, Zhou Z 2013 Acta Phys. Sin. 62 115201Google Scholar

    [29]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201Google Scholar

    [30]

    刘学悫 1980 阴极电子学 (北京: 科学出版社) 第244—273

    Liu X Q 1980 Cathode electronics (Beijing: Science Press) pp244–273

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [3] Hao Guang-Hui, Han Pan-Yang, Li Xing-Hui, Li Ze-Peng, Gao Yu-Juan. The electron emission characteristics of GaAs photocathode with vacuum-channel structure. Acta Physica Sinica, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [4] Zhang Xing-Yu. Effects of current density on fracture behaviors for micron-sized crystalline silicon electrodes. Acta Physica Sinica, 2020, 69(24): 248201. doi: 10.7498/aps.69.20200915
    [5] Fang Yun-Tuan, Wang Yu-Ya, Xia Jing. Large-range electric field sensor based on parity-time symmetry cavity structure. Acta Physica Sinica, 2019, 68(19): 194201. doi: 10.7498/aps.68.20190784
    [6] Cheng Peng, Yang Yu-Mei. Effects of critical current density on mechanical properties of cylindrical superconductors. Acta Physica Sinica, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [7] Hao Guang-Hui, Li Ze-Peng, Gao Yu-Juan, Zhou Ya-Kun. Effect of surface topography on emission properties of hot-cathode. Acta Physica Sinica, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [8] Liu Kang-Lin, Liao Rui-Jin, Zhao Xue-Tong. Measurement of space charges in air based on sound pulse method. Acta Physica Sinica, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [9] Wang Yi-Jun, Cheng Yan. Field-emission current densities of carbon nanotube under the different electric fields. Acta Physica Sinica, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [10] Guo Zhi-Chao, Li Ping-Lin. Grain refinement influence on the critical current density of the MgB2 superconductor sample. Acta Physica Sinica, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [11] Sun Fu-Yu, Wu Zhen-Hua, Zhang Kai-Chun. Design of a high current density cylindrical electron optics system. Acta Physica Sinica, 2010, 59(3): 1721-1725. doi: 10.7498/aps.59.1721
    [12] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [13] Liu Long-Ping, Zhao Zhen-Jie, Huang Can-Xing, Wu Zhi-Ming, Yang Xie-Long. Analysis of current-density distribution and giant magnetoimpedance effect in composite wires. Acta Physica Sinica, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [14] Zhou Xiao-Jun, Du Dong, Gong Jun-Jie. Study on spatial resolution of polarized-modes coupling distributed fiber optic sensor. Acta Physica Sinica, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [15] Wu Han-Hua, Wang Jian-Bo, Long Bei-Yu, Lü Xian-Yi, Long Bei-Hong, Jin Zeng-Sun, Bai Yi-Zhen, Bi Dong-Mei. Effect of current density on physical and chemical properties of microarc oxidation coatings of aluminium alloy. Acta Physica Sinica, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [16] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. A novel FDTD simulation for plasma piecewise linear current density recursive convolution. Acta Physica Sinica, 2004, 53(3): 778-782. doi: 10.7498/aps.53.778
    [17] Liang Fang-Ying, Qing Xin, Zhong Yu-Rong, Ding Shuang-Hong. The study of charge fluctuations in superconductors characteristics. Acta Physica Sinica, 2003, 52(10): 2584-2588. doi: 10.7498/aps.52.2584
    [18] SUN JUN-SHENG, WU CHUAN-SONG. THE INFLUENCE OF WELDPOOL SURFACE SHAPE ON THE DISTRIBUTION OF ARC CURRENT DENSI TY. Acta Physica Sinica, 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
    [19] Han Gu-Chang, Han Han-Min, Wang Zhi-He, Wang Shun-Xi, Liu Xiao-Ning, Liu Zhi-Min, Xi Zheng-Peng, Zhou Lian. . Acta Physica Sinica, 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [20] GU SHI-JIE, HUO CHONG-RU. PROFILES OF JUNCTION CURRENT AND CARRIER-CONCEN-TRATION IN GaAs INJECTION LASERS WITH FILAMENT. Acta Physica Sinica, 1979, 28(1): 21-32. doi: 10.7498/aps.28.21
Metrics
  • Abstract views:  7267
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2020
  • Accepted Date:  21 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map