搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临界电流密度对圆柱状超导体力学特性的影响

程鹏 杨育梅

引用本文:
Citation:

临界电流密度对圆柱状超导体力学特性的影响

程鹏, 杨育梅

Effects of critical current density on mechanical properties of cylindrical superconductors

Cheng Peng, Yang Yu-Mei
PDF
HTML
导出引用
  • 高温超导体具有较高的临界温度、高载流能力和低能耗特性, 在电力领域得到了广泛的应用, 其在通有承载电流情况下的力学特性得到了广泛的关注. 研究了承载电流情形下圆柱状超导结构内的磁通钉扎力学响应. 考虑临界电流密度沿径向非均匀分布, 基于临界态Bean模型, 获得了圆柱状超导结构内的感应磁场及电流的分布规律. 结合平面应变方法, 给出了结构内磁通钉扎力、应力及磁致伸缩的解析表达式. 结果表明: 临界电流密度非均匀分布时, 超导结构内的应力变化趋势与均匀分布时一致, 然而临界电流密度的非均匀分布将导致超导结构内的应力和磁致伸缩的极值增大, 并引起结构内局部径向应力大小发生改变以及环向应力分布不连续. 本研究表明临界电流密度非均匀性对超导结构力学性能的影响是显著的, 可为超导体的设计和实际应用提供参考依据.
    High-temperature superconductor has high critical temperature, high transport current capacity and low energy consumption, which correspondingly offer the wide applications in the field of electric power. As an important concern, the mechanical properties of superconductor carried with transport current have received extensive attention. Still, its mechanical properties in various electromagnetic environments are under study. Most of previous studies are based on the assumption of uniform distribution of critical current density, and only few researches based on the non-uniform distribution of critical current density are carried out. In this work, the mechanical flux pinning response of cylindrical superconducting structures is studied. Considering the non-uniform features of critical current density along the radial direction, the distribution law of induced magnetic field and current for the cylindrical superconducting structure is obtained based on the Bean model. Combined with the plane strain method, the analytical expression of magnetic flux pinning force, stress and magnetostriction in the superconducting structure are obtained. The results show that the uneven distribution of critical current density causes the flux pinning force to change, which further leads the superconductor`s local radial stress to vary with the critical current density. When the transport current flowing through the superconductor is increased in the ascending field, the radial stress and the hoop stress both appear compressive. The non-uniform distribution of critical current density has no significant effect on the overall trend of the internal stress, but displays an obvious influence on the stress distribution, and the superconducting structure is compressed and deformed. The results are consistent with those in the uniform case. When the transport current decreases during field descending, the critical current starts to reverse from the outermost part, then the compressive stress and tensile stress exist simultaneously. The hoop stress has a discontinuous point at the discontinuous portion of the critical current density, thus the damage probability is higher than that of the uniform distribution. In other words, the shear strength of superconductor is required to be higher for application. Also, the degree of magnetostriction is higher when the distribution of critical current density is set to be uniform, that is, the non-uniform distribution of the critical current density causes the superconducting structure to undergo greater deformation. Therefore, in engineering applications, the structural strength of the superconducting material must be enhanced to cope with the challenge from the uneven distribution of critical current density.
      通信作者: 杨育梅, ymyang@lut.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11402106)资助的课题
      Corresponding author: Yang Yu-Mei, ymyang@lut.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11402106)
    [1]

    Shinichi M, Kengo N, Hisaki S, Taro M, Ken N, Masafumi O, Tomohisa Y, Yoshiki M, Kazufumi M, Tadakazu M, Hideki S 2017 IEEE Trans. Appl. Supercond. 27 3600804

    [2]

    Chen X Y, Jin J X, Xin Y, Shu B, Tang C L, Zhu Y P, Sun R M 2014 IEEE Trans. Appl. Supercond. 24 3801606

    [3]

    Patel A, Hopkins S C, Baskys A, Kalitka V, Molodyk A, Glowacki B A 2015 Supercond. Sci. Technol. 28 115007Google Scholar

    [4]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 386Google Scholar

    [5]

    Ren Y T, Weinstein R M, Liu J, Sawh R P, Foster C C 1995 Physica C 251 15Google Scholar

    [6]

    Guan M Z, Hu Q, Gao P F, Wang X Z, Yang T J, Wu W, Xin C J, Wu B M, Ma L Z 2016 Chin. Phys. Lett. 33 58502Google Scholar

    [7]

    Zeng J, Zhou Y H, Yong H D 2010 J. Appl. Phys. 108 033901Google Scholar

    [8]

    Huang C G, Zhou Y H 2014 J. Appl. Phys. 115 033904Google Scholar

    [9]

    Ikuta H, Hirota N, Nakayama Y, Kitazawa K 1993 Phys. Rev. Lett. 70 2166Google Scholar

    [10]

    Ikuta H, Kishio K, Kitazawa K 1994 J. Appl. Phys. 76 4776

    [11]

    Johansen T H 1999 Phys. Rev. B 60 9690Google Scholar

    [12]

    Johansen T H 1999 Phys. Rev. B 59 11187Google Scholar

    [13]

    Johansen T H, Shantsev D V 2003 Supercond. Sci. Technol. 16 1109Google Scholar

    [14]

    Xue C, He A, Yong H D, Zhou Y H 2013 J. Appl. Phys. 113 023901Google Scholar

    [15]

    Huang C G, Yong H D, Zhou Y H 2013 Supercond. Sci. Technol. 26 105007Google Scholar

    [16]

    Haken B T, Eck H J N V, Kate H H J T 2000 Physica C 334 163Google Scholar

    [17]

    Grasso G, Hensel B, Jeremie A, Flükiger R 1995 Physica C 241 45Google Scholar

    [18]

    Lehtonen J R, Ahoranta M, Mikkonen R 2002 Physica C 372−376 1743

    [19]

    Inada R, Nakamura Y, Oota A 2006 Physica C 442 139Google Scholar

    [20]

    Sun J, Watanabe H, Hamabe M, Yamamoto N, Kawahara T, Yamaguchi S 2013 Physica C 494 297Google Scholar

    [21]

    Witanachchi S, Lee S Y, Song L W, Kao Y H, Shaw D T 1990 Appl. Phys. Lett. 57 2133Google Scholar

    [22]

    Noji H 2011 Physica C 471 995Google Scholar

    [23]

    Zheng Y L, Feng W J, Liu Q F 2013 J. Supercond. Novel Magn. 26 2937Google Scholar

  • 图 1  (a)长圆柱状超导结构示意图; (b)临界电流密度分布示意图

    Fig. 1.  (a) Schematic diagram of a long cylindrical superconducting structure; (b) schematic diagram of critical current density distribution.

    图 2  上升场情形下结构内的径向应力的分布 (a) n = 3, i取不同值; (b) i = 0.9, n取不同值

    Fig. 2.  Distribution of radial stress in the structure under the ascending field: (a) n = 3, i takes different values; (b) i = 0.9, n takes different values.

    图 3  上升场情形下结构内的环向应力的分布 (a) n = 3, i取不同值; (b) i = 0.9, n取不同值

    Fig. 3.  Distribution of hoop stress in the structure under the ascending field: (a) n = 3, i takes different values; (b) i = 0.9, n takes different values.

    图 4  上升场情形下结构内的径向位移沿半径方向的分布

    Fig. 4.  Distribution of radial displacement within the structure along the radial direction in the case of an ascending field.

    图 5  下降场中结构内的径向应力沿半径方向的分布 (a) n = 3, i取不同值; (b) i = 0, n取不同值

    Fig. 5.  Distribution of radial stress in the structure in the falling field along the radial direction: (a) n = 3, i takes different values; (b) i = 0, n takes different values.

    图 6  下降场中结构内的环向应力沿半径方向的分布 (a) n = 3, i取不同值; (b) i = 0, n取不同值

    Fig. 6.  Distribution of the hoop stress in the structure in the falling field along the radial direction: (a) n = 3, i takes different values; (b) i = 0, n takes different values.

    图 7  下降场中结构内的径向位移沿半径方向的分布

    Fig. 7.  Distribution of radial displacement within the structure in the descending field along the radial direction.

    图 8  临界电流密度分布不同时超导圆柱体的磁致伸缩

    Fig. 8.  Magnetostriction of a superconducting cylinder with different critical current density distributions.

    Baidu
  • [1]

    Shinichi M, Kengo N, Hisaki S, Taro M, Ken N, Masafumi O, Tomohisa Y, Yoshiki M, Kazufumi M, Tadakazu M, Hideki S 2017 IEEE Trans. Appl. Supercond. 27 3600804

    [2]

    Chen X Y, Jin J X, Xin Y, Shu B, Tang C L, Zhu Y P, Sun R M 2014 IEEE Trans. Appl. Supercond. 24 3801606

    [3]

    Patel A, Hopkins S C, Baskys A, Kalitka V, Molodyk A, Glowacki B A 2015 Supercond. Sci. Technol. 28 115007Google Scholar

    [4]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 386Google Scholar

    [5]

    Ren Y T, Weinstein R M, Liu J, Sawh R P, Foster C C 1995 Physica C 251 15Google Scholar

    [6]

    Guan M Z, Hu Q, Gao P F, Wang X Z, Yang T J, Wu W, Xin C J, Wu B M, Ma L Z 2016 Chin. Phys. Lett. 33 58502Google Scholar

    [7]

    Zeng J, Zhou Y H, Yong H D 2010 J. Appl. Phys. 108 033901Google Scholar

    [8]

    Huang C G, Zhou Y H 2014 J. Appl. Phys. 115 033904Google Scholar

    [9]

    Ikuta H, Hirota N, Nakayama Y, Kitazawa K 1993 Phys. Rev. Lett. 70 2166Google Scholar

    [10]

    Ikuta H, Kishio K, Kitazawa K 1994 J. Appl. Phys. 76 4776

    [11]

    Johansen T H 1999 Phys. Rev. B 60 9690Google Scholar

    [12]

    Johansen T H 1999 Phys. Rev. B 59 11187Google Scholar

    [13]

    Johansen T H, Shantsev D V 2003 Supercond. Sci. Technol. 16 1109Google Scholar

    [14]

    Xue C, He A, Yong H D, Zhou Y H 2013 J. Appl. Phys. 113 023901Google Scholar

    [15]

    Huang C G, Yong H D, Zhou Y H 2013 Supercond. Sci. Technol. 26 105007Google Scholar

    [16]

    Haken B T, Eck H J N V, Kate H H J T 2000 Physica C 334 163Google Scholar

    [17]

    Grasso G, Hensel B, Jeremie A, Flükiger R 1995 Physica C 241 45Google Scholar

    [18]

    Lehtonen J R, Ahoranta M, Mikkonen R 2002 Physica C 372−376 1743

    [19]

    Inada R, Nakamura Y, Oota A 2006 Physica C 442 139Google Scholar

    [20]

    Sun J, Watanabe H, Hamabe M, Yamamoto N, Kawahara T, Yamaguchi S 2013 Physica C 494 297Google Scholar

    [21]

    Witanachchi S, Lee S Y, Song L W, Kao Y H, Shaw D T 1990 Appl. Phys. Lett. 57 2133Google Scholar

    [22]

    Noji H 2011 Physica C 471 995Google Scholar

    [23]

    Zheng Y L, Feng W J, Liu Q F 2013 J. Supercond. Novel Magn. 26 2937Google Scholar

  • [1] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介.  , 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [2] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控.  , 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [3] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎.  , 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [4] 许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元. 层状材料褶皱对几种地质活动机理研究的启示.  , 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [5] 王春雷, 易晓磊, 姚超, 张谦君, 林鹤, 张现平, 王栋樑, 马衍伟. Ba1-xKxFe2As2单晶(Tc=38.5K)磁通钉扎力与钉扎机理研究.  , 2015, 64(11): 117401. doi: 10.7498/aps.64.117401
    [6] 王银博, 薛驰, 冯庆荣. 钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响.  , 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [7] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究.  , 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [8] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟.  , 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [9] 王庆学. 异质结构的应变和应力分布模型研究.  , 2005, 54(8): 3757-3763. doi: 10.7498/aps.54.3757
    [10] 冯 勇, 周 廉, 杨万民, 张翠萍, 汪京荣, 于泽铭, 吴晓祖. PMP法YGdBaCuO超导体的磁通钉扎研究.  , 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [11] 姜建义, 胡安明, 孙玉平, 张发培, 杜家驹. 高JcBi-2223银包套带材的电阻转变展宽与磁通钉扎.  , 1996, 45(2): 283-290. doi: 10.7498/aps.45.283
    [12] 王智河. Bi-2223银夹板厚膜的载流特性与应变的关系.  , 1996, 45(3): 518-521. doi: 10.7498/aps.45.518
    [13] 孙玉平, 张发培, 姜建义, 胡安明, 王迎枫, 杜家驹, 张裕恒, 盛正直. 高Jc Tl系2223相银包套带材的磁通钉扎和耗散.  , 1994, 43(7): 1166-1171. doi: 10.7498/aps.43.1166
    [14] 胡刚进, 方明虎, 李钟贤, 曾兴斌, 陈南松, 焦正宽, 张其瑞, 张贻瞳, 金新, 姚希贤. YBa2Cu3Oy中氧缺位的磁通钉扎效应.  , 1993, 42(10): 1669-1673. doi: 10.7498/aps.42.1669
    [15] 丁世英, 史可信, 曾朝阳, 余正, 施智祥, 邱里. Tl2Ba2Ca2Cu3Oy超导体磁通钉扎能的分布.  , 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [16] 金新, 张贻瞳, 鹿牧, 张长贵, 颜涌, 于杨, 沈剑沧, 姚希贤. (BiPb)-Sr-Ca-Cu-O2223相高Tc超导体磁通钉扎与蠕动.  , 1991, 40(4): 630-633. doi: 10.7498/aps.40.630
    [17] 丁世英, 施智祥, 颜家烈, 余正, 史可信, 童红武, 邱里. Tl2Ba2Ca2Cu3Oy超导体低场钉扎力的性质.  , 1990, 39(12): 1999-2004. doi: 10.7498/aps.39.1999
    [18] 丁世英, 颜家烈, 余正, 童红武, 史可信, 邱里. YBaCuO超导陶瓷的有效钉扎力.  , 1990, 39(6): 157-162. doi: 10.7498/aps.39.157
    [19] 赵勇, 孙式方, 张酣, 张其瑞. YbxY1-xBa2Cu3O7-y的超导载流特性.  , 1989, 38(4): 694-698. doi: 10.7498/aps.38.694
    [20] 丁世英, 余正, 史可信. 非理想平面散射中心的磁通钉扎.  , 1987, 36(12): 1635-1639. doi: 10.7498/aps.36.1635
计量
  • 文章访问数:  8032
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-18
  • 修回日期:  2019-07-02
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map