Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isostructural phase transition of fcc Ce: Molecular dynamics simulations

Diwu Min-Jie Hu Xiao-Mian

Citation:

Isostructural phase transition of fcc Ce: Molecular dynamics simulations

Diwu Min-Jie, Hu Xiao-Mian
PDF
HTML
Get Citation
  • Ce is a rare earth element in the periodic table. In the range of low temperature and low pressure, there are two face-centered-cubic (FCC) phases (α-Ce and γ-Ce) and a double-hexagonal-close-packed phase (β-Ce) for metallic Ce. At ambient temperature and about 0.7 GPa pressure, Ce undergoes γα phase transition with a volume shrink of 14%–17% discontinuously. In this paper, an embedded-atom method (EAM) potential compatible for α-Ce and γ-Ce was developed. This EAM potential has been employed to study several basic properties of cerium in these two FCC phases, such as equilibrium lattice constants, cohesive energies, and elastic constants. These results showed good accordance with experiments and first principle calculations. The lattice defects have been studied with the formation energy calculations of vacancies, interstitials, surfaces, stacking faults, and twinning defects in α-Ce and γ-Ce lattice. The lattice dynamics of α-Ce and γ-Ce have been analyzed using our EAM potential. The lattice vibrational entropy was calculated and plotted as functions of temperature for each phases. The vibrational entropy change across the α-γ phase transition showed to be ~0.67 kB per atom at ambient temperature. Using molecular dynamics simulation with our EAM potential, several isotherms and radial distribution functions were calculated. These isotherms and radial distribution functions demonstrate a first order phase transition between two FCC structures, corresponding to α-Ce and γ-Ce, with a critical point sets at Tc≈550 K and Pc≈1.21 GPa. Thus the newly developed EAM potential could provide a reasonable description of FCC Ce and its α-γ phase transition within the scale of classical molecular dynamics simulation.
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    [1]

    郑海冰 2017 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Zheng H B 2017 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [2]

    金铭 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Jin M 2018 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [3]

    林河成 2005 中国有色冶金 3 31Google Scholar

    Lin H C 2005 China Nonferrous Metallurgy 3 31Google Scholar

    [4]

    Koskenmaki D C, Gschneidner K A 1978 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: Elsevier North-Holland) pp337–377

    [5]

    潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 61 206401Google Scholar

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401Google Scholar

    [6]

    Wang Y, Jr Hector L G, Zhang H, Shang S L, Chen L Q, Liu Z K 2008 Phys. Rev. B 78 104113Google Scholar

    [7]

    Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M, Amadon B 2011 Phys. Rev. Lett. 106 065701

    [8]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, McMahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [9]

    Johansson B 1974 Philos. Mag. 30 469Google Scholar

    [10]

    Allen J W, Martin R M 1982 Phys. Rev. Lett. 49 1106Google Scholar

    [11]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2016 Phys. Rev. B 93 075153Google Scholar

    [12]

    Amadon B, Biermann S, Georges A, Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402Google Scholar

    [13]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [14]

    El'kin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Phys. Met. Metall. 101 208Google Scholar

    [15]

    El'kin V M, Mikhaylov V N, Petrovtsev A V, Cherne F J 2011 Phys. Rev. B 84 094120Google Scholar

    [16]

    Yelkin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Shock Compression of Condensed Matter2005 Baltimore, Maryland 31 July–5 August, 2005 pp77–80

    [17]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2012 Phys. Rev. Lett. 109 146402Google Scholar

    [18]

    Huang L, Chen CA 2007 J. Phys.Condens. Matter 19 476206Google Scholar

    [19]

    Krisch M, Farber D L, Xu R, Antonangeli D, Aracne C M, Beraud A, Chiang T-C, Zarestky J, Kim D Y, Isaev E I, Ahuja R, Johansson B 2011 Proc. Natl. Acad. Sci. U.S.A. 108 9342Google Scholar

    [20]

    Singh N, Singh S P 1990 Phys. Rev. B 42 1652Google Scholar

    [21]

    Hachiya K, Ito Y 1999 J. Phys. Condens. Matter 11 6543Google Scholar

    [22]

    Sheng H W, Kramer M J, Cadien A, Fujita T, Chen M W 2011 Phys. Rev. B 83 134118Google Scholar

    [23]

    Fu J, Zhao J 2013 Modell. Simul. Mater. Sci. Eng. 21 065003Google Scholar

    [24]

    Voter A F, Chen S P 1986 MRS Proceedings 82 175Google Scholar

    [25]

    Dupont V, Chen S P, Germann T C 2010 EPJ Web of Conferences Paris, France, May 24–28, 2010 p00009

    [26]

    Dupont V, Germann T C 2010 APS March Meeting Portland, Oregon, March 15–19, 2010 W30.00007

    [27]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [28]

    Duff A I, Finnis M W, Maugis P, Thijsse B J, Sluiter M H F 2015 Comput. Phys. Commun. 196 439Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Eriksson O, Brooks M S S, Johansson B 1990 Phys. Rev. B 41 7311Google Scholar

    [31]

    Greiner J D, McMasters O D, Smith J F 1980 Scr. Metall. 14 989Google Scholar

    [32]

    Staun Olsen J, Gerward L, Dancausse J P, Gering E 1993 Physica B 190 92Google Scholar

    [33]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 Soviet Phys. JETP 49 687

    [34]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 9306Google Scholar

    [35]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [36]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp487–562

    [37]

    Östlin A, Di Marco I, Locht I L M, Lashley J C, Vitos L 2016 Phys. Rev. B 93 094103Google Scholar

    [38]

    van Swygenhoven H, Derlet P M, Frøseth A G 2004 Nat. Mater. 3 399Google Scholar

    [39]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117Google Scholar

    [40]

    Tadmor E, Hai S 2003 J. Mech. Phys. Solids 51 765Google Scholar

    [41]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

  • 图 1  Ce的EAM势 (a)对势函数和电子密度分布函数; (b)嵌入能函数

    Figure 1.  EAM potential for Ce: (a) The pair function Φ(rij) and the density function f(rij); (b) the embedded function F(ρ).

    图 2  由本文EAM势得出的面心立方Ce的冷能曲线

    Figure 2.  The cold energy of fcc Ce calculated with the newly developed EAM potential.

    图 3  面心立方Ce中的广义层错能和广义孪晶能 (a) α-Ce; (b) γ-Ce

    Figure 3.  Generalized stacking fault energy and generalized twining fault energy curve for (a) α-Ce and (b) γ-Ce.

    图 4  面心立方Ce的声子态密度

    Figure 4.  Phonon density of states for FCC Ce.

    图 5  α-Ce和γ-Ce两相的晶格振动熵Svib以及熵差ΔSvib (右下插图)随温度T的变化

    Figure 5.  The vibrational entropy Svib and its change ΔSvib between two phases (the inset) plotted as functions of temperature.

    图 6  面心立方Ce的声子色散谱

    Figure 6.  Phonon dispersion relations for FCC Ce.

    图 7  面心立方Ce的等温线 (a) NPT增压; (b) NPT减压; (c) NVT

    Figure 7.  Isotherms of FCC Ce: (a) NPT, pressure increased; (b) NPT, pressure decreased; (c) NVT.

    图 8  Ce的γααγ相变路径

    Figure 8.  The path of Ce γα and αγ phase transition.

    图 9  零压以及图7A, B两点状态的径向分布函数

    Figure 9.  Radial distribution function for zero pressure (black), the A state (red), and the B state (blue) pointed in Fig.7.

    表 1  面心立方Ce的基本性质的EAM计算值与实验和第一性原理结果的比较

    Table 1.  EAM predicted properties of Ce lattice in comparison with experimental and ab initiodata.

    γ-Ceα-Ce
    实验第一性原理本文EAM实验第一性原理本文EAM
    a05.16[4]5.22[11]5.144.84[4] 4.90[30]4.63[11]4.81
    Ecoh/eV4.32[4]4.35[11]4.324.3[11]3.76[11]4.3255
    体弹模量/GPa18.18[31]28.3[11]16.7835.0[32], 16.94[33]37.0[34]37.00
    c11 /GPa26.01[31]23.0652.9[34]59.77
    c12 /GPa14.26[31]13.6429.1[34]25.62
    c44 /GPa17.30[31]17.6444.6[34]49.98
    剪切模量/GPa12.73[31]12.4717.26[33]36.82
    DownLoad: CSV

    表 2  γ-Ce and α-Ce中晶体缺陷的形成能

    Table 2.  Calculated formation energy of lattice defectsin γ-Ce and α-Ce.

    γ-Ceα-Ce
    之前的结果本文EAM之前的结果本文EAM
    Eif/eV3.3[22]1.932.97
    Evf/eV0.75[22], 2.02[23]0.851.15
    γ(100)/mJ·m–2697[22], 2140[23]391308
    γ(110)/mJ·m–2797[22], 2220[23]442390
    γ(111)/mJ·m–2586[22], 2190[23]297195
    γssf/mJ·m–2486[22],58[37], 16[37], –0.2[37]457301[37], 311[37], 369[37]734
    γusf/mJ·m–2501[22]543822
    γutf/mJ·m–212[22]7681167
    DownLoad: CSV
    Baidu
  • [1]

    郑海冰 2017 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Zheng H B 2017 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [2]

    金铭 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Jin M 2018 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [3]

    林河成 2005 中国有色冶金 3 31Google Scholar

    Lin H C 2005 China Nonferrous Metallurgy 3 31Google Scholar

    [4]

    Koskenmaki D C, Gschneidner K A 1978 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: Elsevier North-Holland) pp337–377

    [5]

    潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 61 206401Google Scholar

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401Google Scholar

    [6]

    Wang Y, Jr Hector L G, Zhang H, Shang S L, Chen L Q, Liu Z K 2008 Phys. Rev. B 78 104113Google Scholar

    [7]

    Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M, Amadon B 2011 Phys. Rev. Lett. 106 065701

    [8]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, McMahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [9]

    Johansson B 1974 Philos. Mag. 30 469Google Scholar

    [10]

    Allen J W, Martin R M 1982 Phys. Rev. Lett. 49 1106Google Scholar

    [11]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2016 Phys. Rev. B 93 075153Google Scholar

    [12]

    Amadon B, Biermann S, Georges A, Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402Google Scholar

    [13]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [14]

    El'kin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Phys. Met. Metall. 101 208Google Scholar

    [15]

    El'kin V M, Mikhaylov V N, Petrovtsev A V, Cherne F J 2011 Phys. Rev. B 84 094120Google Scholar

    [16]

    Yelkin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Shock Compression of Condensed Matter2005 Baltimore, Maryland 31 July–5 August, 2005 pp77–80

    [17]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2012 Phys. Rev. Lett. 109 146402Google Scholar

    [18]

    Huang L, Chen CA 2007 J. Phys.Condens. Matter 19 476206Google Scholar

    [19]

    Krisch M, Farber D L, Xu R, Antonangeli D, Aracne C M, Beraud A, Chiang T-C, Zarestky J, Kim D Y, Isaev E I, Ahuja R, Johansson B 2011 Proc. Natl. Acad. Sci. U.S.A. 108 9342Google Scholar

    [20]

    Singh N, Singh S P 1990 Phys. Rev. B 42 1652Google Scholar

    [21]

    Hachiya K, Ito Y 1999 J. Phys. Condens. Matter 11 6543Google Scholar

    [22]

    Sheng H W, Kramer M J, Cadien A, Fujita T, Chen M W 2011 Phys. Rev. B 83 134118Google Scholar

    [23]

    Fu J, Zhao J 2013 Modell. Simul. Mater. Sci. Eng. 21 065003Google Scholar

    [24]

    Voter A F, Chen S P 1986 MRS Proceedings 82 175Google Scholar

    [25]

    Dupont V, Chen S P, Germann T C 2010 EPJ Web of Conferences Paris, France, May 24–28, 2010 p00009

    [26]

    Dupont V, Germann T C 2010 APS March Meeting Portland, Oregon, March 15–19, 2010 W30.00007

    [27]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [28]

    Duff A I, Finnis M W, Maugis P, Thijsse B J, Sluiter M H F 2015 Comput. Phys. Commun. 196 439Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Eriksson O, Brooks M S S, Johansson B 1990 Phys. Rev. B 41 7311Google Scholar

    [31]

    Greiner J D, McMasters O D, Smith J F 1980 Scr. Metall. 14 989Google Scholar

    [32]

    Staun Olsen J, Gerward L, Dancausse J P, Gering E 1993 Physica B 190 92Google Scholar

    [33]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 Soviet Phys. JETP 49 687

    [34]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 9306Google Scholar

    [35]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [36]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp487–562

    [37]

    Östlin A, Di Marco I, Locht I L M, Lashley J C, Vitos L 2016 Phys. Rev. B 93 094103Google Scholar

    [38]

    van Swygenhoven H, Derlet P M, Frøseth A G 2004 Nat. Mater. 3 399Google Scholar

    [39]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117Google Scholar

    [40]

    Tadmor E, Hai S 2003 J. Mech. Phys. Solids 51 765Google Scholar

    [41]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

  • [1] Zhang Xiao-Jun, Wang An-Xiang, Yan Xiang-An, Chen Chang-Le. Application of the modified analytic embedded atomic method in W(100) surface phonon spectrum. Acta Physica Sinica, 2020, 69(7): 076301. doi: 10.7498/aps.69.20191910
    [2] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [3] Tian Xiao-Lin,  Zhao Yu-Hong,  Tian Jin-Zhong,  Hou Hua. Effects of interatomic potential on precipitation sequences of medium Al concentration in Ni75AlxV25-x alloys. Acta Physica Sinica, 2018, 67(23): 230201. doi: 10.7498/aps.67.20181366
    [4] Sun Su-Rong, Wang Hai-Xing. A comparison of interatomic potentials for noble gases. Acta Physica Sinica, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [5] Zhao Jian-Dong, Xin Jie. Van der Waals interaction between high excited states. Acta Physica Sinica, 2014, 63(13): 133201. doi: 10.7498/aps.63.133201
    [6] Wang Xiao-Lu, Linghu Rong-Feng, Song Xiao-Shu, Lü Bing, Yang Xiang-Dong. Interactional potential of helium atom and hydrogen halide molecules. Acta Physica Sinica, 2013, 62(16): 163101. doi: 10.7498/aps.62.163101
    [7] Linghu Rong-Feng, Xu Mei, Lü Bing, Song Xiao-Shu, Yang Xiang-Dong. Theoretical study on He-N2 interaction potential. Acta Physica Sinica, 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [8] An Rong, Liu Wei, Wang Chun-Qing, Tian Yan-Hong. Analytical bond-order potential for Sn. Acta Physica Sinica, 2013, 62(12): 128101. doi: 10.7498/aps.62.128101
    [9] Pan Hao, Hu Xiao-Mian, Wu Zi-Hui, Dai Cheng-Da, Wu Qiang. Numerical study of shock-induced phase transformation of cerium under low pressure. Acta Physica Sinica, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [10] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [11] Chen Yi, Shen Jiang. Structural and thermodynamic properties of Fe based compounds with NaZn13-type. Acta Physica Sinica, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [12] Chen Yi, Shen Jiang. Theoretical study on structural properties for rare earth intermetallic compounds RFe2Zn20-xInx. Acta Physica Sinica, 2009, 58(13): 146-S150. doi: 10.7498/aps.58.146
    [13] Jiang Hui-Feng, Zhang Qing-Chuan, Chen Xue-Dong, Fan Zhi-Chao, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Physica Sinica, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [14] Wang Yong-Liang, Zhang Chao, Tang Xin, Zhang Qing-Yu. Influence of interaction between Cu adatoms on the hopping diffusion on Cu(001) surface. Acta Physica Sinica, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [15] Li Ming, Sun Jiu-Xun. Influence of the interaction between atoms on the squeezing of light field and atomic lasers. Acta Physica Sinica, 2006, 55(6): 2702-2707. doi: 10.7498/aps.55.2702
    [16] Zhou Ming, Huang Chun-Jia. Influence of the interaction between atoms on the squeezing properties of atomic lasers. Acta Physica Sinica, 2004, 53(1): 54-57. doi: 10.7498/aps.53.54
    [17] Zhang Jian-Min, Xu Ke-Wei, Ma Fei. Calculation of surface energy of Cu crystal with modified embedded-atom method. Acta Physica Sinica, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [18] LI MI. THE INTERATOMIC INTERACTION AND PHONON DISPERSIONS IN IRON. Acta Physica Sinica, 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
    [19] WAN JUN, SHEN SAN-GUO, FAN XI-QING. MODIFIED EMBEDDED-ATOM METHOD FOR SIMULATING THE MULTILAYER RELAXATION AND SELF-DIFFUSION OF COPPER. Acta Physica Sinica, 1997, 46(6): 1161-1167. doi: 10.7498/aps.46.1161
    [20] LlU JIA-RUI, ZHANG JIAN-HUA, LI YI. THE EFFECT OF ANHARMONIC INTERACTIONS AMONG LATTICE ATOMS ON THE ION IMPLANTATION. Acta Physica Sinica, 1989, 38(9): 1400-1405. doi: 10.7498/aps.38.1400
Metrics
  • Abstract views:  11413
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2019
  • Accepted Date:  09 August 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map