Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electric field tuning characteristic of multiple optical parametric oscillator based on MgO:QPLN

Yu Yong-Ji Chen Xin-Yu Cheng Li-Bo Wang Chao Wu Chun-Ting Dong Yuan Li Shu-Tao Jin Guang-Yong

Citation:

Electric field tuning characteristic of multiple optical parametric oscillator based on MgO:QPLN

Yu Yong-Ji, Chen Xin-Yu, Cheng Li-Bo, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The quasi-phase matching optical parametric oscillator tuning methods, i.e. grating period tuning, temperature tuning, pumping wavelength tuning, and angle tuning are more simple and convenient than the traditional mechanical tuning which requires inserting the frequency selective element into the cavity. However, itneed to be improved for wavelength tuning in quick response and high-accuracy control. In this paper, the tunability of multiple optical parametric oscillator (MOPO) based on MgO:QPLN has been studied under an applied electric field. Based on the linear electro-optic effect of LiNbO3, we theoretically analyze the feasibility of achieving parametric light wavelengths tuning by applying electric field of particular direction on the z-direction of LiNbO3. We study the relationships between the ability of electric field tuning and the polarization structure parameters, and analyze the feasibility of MgO:QPLN with high positive and negative superlattice domain ratio for electric field tuning. The relationship of output wavelength and loading voltage is achieved by simulation. Simulation results show that the tuning rates of 1.57 μm signal light and 3.84 μm idler light are about 0.27 and 0.93 nm/kV, respectively. By reasonably controlling the temperature of MgO:QPLN crystal, tuning sections of the parametric light electric field could be linked orderly, and the output wavelength of parametric lights could be turned continuously in a wide range, which greatly expands the spectral bandwidth of the electric field tuning. In the experiment, a high-repetition-rate acousto-optic Q-switched Nd:YVO4 laser at 1064 nm is applied as the pumping source. The laser works at 200 kHz with a pulse width of 9.756 ns and its maximumouput power is 22.8 W on average. When the temperature of MgO:QPLN is stable at 20℃, the average output power of 1.57 μm signal light and 3.84 μm idler light are 1.7 and 0.72 W, respectively, and the corresponding pulse width of the two parametric lights is 9.132 and 8.463 ns. By loading proper electric field on MgO:QPLN (on-load voltage:-3000 V-+3000 V), we achieve the electric tuning of the parametric light at 3.84 μm range, and the bandwidth of spectral tuning is about 6 nm with the tuning rate approaching 1 nm/kV. Combining the temperature tuning with the electric field tuning, we further achieved high-precision continuous tuning of the parametric light in a wide spectrum range. All the final experimental results agree basically with the theoretical analysis one. In addition, results show that the electric field tuning performs better than the temperature tuning in accuracy control and quick response. For MgO:QPLN-MOPO, its irregular domain configuration could work adequately by introducing the electric tuning.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61240004), the Science and Technology Department Project of Jilin Province, China (Grant No. 20121815), and the Natural Science Foundation for Young Scientists of Jilin Province, China (Grant No. 20150520103JH).
    [1]

    Kumar S C, Das R, Samanta G K, Ebrahim-Zadeh M 2011 Appl. Phys. B 102 31

    [2]

    Sheng Q, Ding X, Shi C P, Yin S J, Li B, Shang C, Yu X Y, Wen W Q, Yao J Q 2012 Opt. Express 20 8041

    [3]

    Li B, Ding X, Sheng Q, Yin S J, Shi C P, Li X, Yu X Y, Wen W Q, Yao J Q 2012 Chin. Phys. B 21 014207

    [4]

    Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P, Yao J Q 2009 Chin. Phys. B 18 4314

    [5]

    Mikael S, Markku V, Lauri H 2010 Opt. Express 18 14087

    [6]

    Lin H Y, Tan H M, Miao J G, Cui T C, Su S C, Guo J 2009 Opt. Mater. 32 257

    [7]

    Peng Y F, Wei X B, Wang W M, Li D M 2010 Opt. Commun. 283 4032

    [8]

    Vincent K, David J, Jerome D, Patricia S, Benoit B, Bertand M, Hideki I, Takunori T 2013 Opt. Lett. 38 860

    [9]

    Powers P E, Kulp T J, Bisson S E 1998 Opt. Lett. 23 159

    [10]

    Yu C S, Kung A H 1999 J. Opt. Soc. Am. B 16 2233

    [11]

    Kong Y F, Xu J J, Zhang G Y, Liu S M, Lu Y 2005 Multifunctional Photoelectric Material: Lithium Niobate Crystal (Beijing: Science Press) p135 (in Chinese) [孔勇发, 许京军, 张光寅, 刘思敏, 陆猗 2005 多功能光电材料–-铌酸锂晶体(北京: 科学出版社)第135页]

    [12]

    Yao J Q, Xu D G 2007 All Solid Laser and Nonlinear Optical Frequency Conversion Technology (Beijing: Science Press) p724 (in Chinese) [姚建铨, 徐德刚 2007 全固态激光及非线性光学频率变换技术(北京: 科学出版社)第724页]

    [13]

    Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843

    [14]

    Zia R K P, Dallas W J 1985 J. Phys. A: Math. Gen. 18 L341

    [15]

    Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203 (in Chinese) [于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 64 044203]

  • [1]

    Kumar S C, Das R, Samanta G K, Ebrahim-Zadeh M 2011 Appl. Phys. B 102 31

    [2]

    Sheng Q, Ding X, Shi C P, Yin S J, Li B, Shang C, Yu X Y, Wen W Q, Yao J Q 2012 Opt. Express 20 8041

    [3]

    Li B, Ding X, Sheng Q, Yin S J, Shi C P, Li X, Yu X Y, Wen W Q, Yao J Q 2012 Chin. Phys. B 21 014207

    [4]

    Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P, Yao J Q 2009 Chin. Phys. B 18 4314

    [5]

    Mikael S, Markku V, Lauri H 2010 Opt. Express 18 14087

    [6]

    Lin H Y, Tan H M, Miao J G, Cui T C, Su S C, Guo J 2009 Opt. Mater. 32 257

    [7]

    Peng Y F, Wei X B, Wang W M, Li D M 2010 Opt. Commun. 283 4032

    [8]

    Vincent K, David J, Jerome D, Patricia S, Benoit B, Bertand M, Hideki I, Takunori T 2013 Opt. Lett. 38 860

    [9]

    Powers P E, Kulp T J, Bisson S E 1998 Opt. Lett. 23 159

    [10]

    Yu C S, Kung A H 1999 J. Opt. Soc. Am. B 16 2233

    [11]

    Kong Y F, Xu J J, Zhang G Y, Liu S M, Lu Y 2005 Multifunctional Photoelectric Material: Lithium Niobate Crystal (Beijing: Science Press) p135 (in Chinese) [孔勇发, 许京军, 张光寅, 刘思敏, 陆猗 2005 多功能光电材料–-铌酸锂晶体(北京: 科学出版社)第135页]

    [12]

    Yao J Q, Xu D G 2007 All Solid Laser and Nonlinear Optical Frequency Conversion Technology (Beijing: Science Press) p724 (in Chinese) [姚建铨, 徐德刚 2007 全固态激光及非线性光学频率变换技术(北京: 科学出版社)第724页]

    [13]

    Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843

    [14]

    Zia R K P, Dallas W J 1985 J. Phys. A: Math. Gen. 18 L341

    [15]

    Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203 (in Chinese) [于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 64 044203]

  • [1] Li Ming-Zhou, Li Zhi-Yuan. Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation. Acta Physica Sinica, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [2] Yu Yong-Ji, Chen Xin-Yu, Cheng Li-Bo, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong. Continuous-wave 1.57 m/3.84 m intra-cavity multiple optical parametric oscillator based on MgO:APLN. Acta Physica Sinica, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [3] Yu Yong-Ji, Chen Xin-Yu, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong. Experimental study of multiple optical parametric oscillator based on MgO:APLN and its evolution analysis of back conversion. Acta Physica Sinica, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [4] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [5] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [6] Ren Ai-Hong, Liu Zheng-Ying, Zhang Rong-Zhu, Liu Jing-Lun, Sun Nian-Chun. Bandwidth in qusai-phase-matched frequency doubling. Acta Physica Sinica, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [7] Liu Tao, Gu Wan-Yi, Shi Pei-Ming, Yu Song, Zhang Hua. Broadband tunable pulses in quasi-phase-matched crystal based optical parametric amplification. Acta Physica Sinica, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [8] Ren Ji-Gang, Zhang Han, Cai Xin-Dong, Yin Juan, Zhou Fei, Peng Cheng-Zhi. Design of high brightness entangled source based on periodically poled KTiOPO4 crystal. Acta Physica Sinica, 2009, 58(8): 5169-5173. doi: 10.7498/aps.58.5169
    [9] Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan, Hu Xiao-Peng, Zhu Shi-Ning. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [10] Zhang Bai-Gang, Yao Jian-Quan, Lu Yang, Ji Feng, Zhang Tie-Li, Xu De-Gang, Wang Peng, Xu Ke-Xin. Pump source angle tuning in quasi-phase matched optical parametric oscillator. Acta Physica Sinica, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [11] Wang Ting, Ma Bo-Qin, Sheng Yan, Cheng Bing-Ying, Zhang Dao-Zhong. The effect of electrode configuration in domain broadening of periodically poled LiNbO3. Acta Physica Sinica, 2005, 54(10): 4761-4764. doi: 10.7498/aps.54.4761
    [12] Ji Ling-Ling, Wu Ling-An. Generation of two-photon entangled states through a cascaded nonlinear optical process in a quasiperiodic optical superlattice. Acta Physica Sinica, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [13] Ma Hong-Liang, Wei Dong, Ye Chen-Guang, Zhang Jing, Peng Kun-Chi. Bright amplitude-squeezed light generation by an optical parametric deamplifier in a periodically poled KTiOPO4 crystal. Acta Physica Sinica, 2005, 54(8): 3637-3640. doi: 10.7498/aps.54.3637
    [14] Chen Yun-Lin, Yuan Jian-Wei, Yan Wei-Guo, Zhou Bin-Bin, Luo Yong-Feng, Guo Juan. Quasi-phase-matched second-harmonic-generation in bulk periodically poled LiNbO3 and optimal design. Acta Physica Sinica, 2005, 54(5): 2079-2083. doi: 10.7498/aps.54.2079
    [15] Ni Pei-Gen, Ma Bo-Qin, Cheng Bing-Ying, Zhang Dao-Zhong. Two-dimensional periodically poled LiNbO3 nonlinear photonic crystal. Acta Physica Sinica, 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
    [16] Li Yong-Min, Wu Ying-Rui, Zhang Kuan-Shou, Peng Kun-Chi. Generation of tunable intensity difference squeezing light from a quasi-phase-matched OPO. Acta Physica Sinica, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [17] Li Shi-Chen, Xue Ting, Yu Jian. . Acta Physica Sinica, 2002, 51(9): 2018-2021. doi: 10.7498/aps.51.2018
    [18] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Tan Li, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [20] LI YONG-MIN, FAN QIAO-YUN, ZHANG KUAN-SHOU, XIE CHANG-DE, PENG KUN-CHI. QUADRATURE PHASE-SQUEEZING OF PUMP FIELD REFLECTED FROM TRIPLY RESONANT QUASI-PHASE-MATCHED OPTICAL PARAMETRIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
Metrics
  • Abstract views:  9727
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2015
  • Accepted Date:  28 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map