Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Defocusing mechanism and focusing evaluation function of light field imaging

Liu Bin Pan Yi-Hua Yan Wen-Min

Citation:

Defocusing mechanism and focusing evaluation function of light field imaging

Liu Bin, Pan Yi-Hua, Yan Wen-Min
PDF
HTML
Get Citation
  • The light field imaging technology can realize the application of the full-focus image synthesis of the scene and the de-occlusion reconstruction of background target through the classification of the light field information of the scene. How to effectively evaluate the focus area in the image is a prerequisite for the above application. The dispersion characteristics of the defocusing point of a conventional imaging system are fundamentally different from those of the defocusing area in the refocusing image of the light field. Therefore, the evaluation criteria based on the diffusion characteristics of the defocusing point cannot be applied to the evaluation of the focus of the refocusing image of the light field. Aiming at the above problems, in this paper, starting from the principle of refocusing of light field imaging, we analyze the blurring characteristics of the defocused target image, and propose a new evaluation function of the focus of the refocusing image of the light field. Based on this, the refinement segmentation method of the focal region is studied to achieve the final focus area extraction. According to the indoor scene data set captured by the camera array of Stanford university, in this paper we use the traditional focus degree evaluation algorithm and the algorithm to evaluate the focusing degree of the foreground target potted plant in the scene and obtain the complete information about the foreground target, therefore we also study the refined segmentation algorithm. Then, in the process of refocusing the background object (CD box), the foreground light is screened out, and the reconstructed image of the specified focusing plane is obtained. Using the peak-signal-to-noise ratio and mean structural similarity index measure to evaluate the quality of the target in refocusing area, the results show that the proposed algorithm in this paper can effectively mark and separate the imaginary artifact information and ensure the high-quality focus reconstruction of the partially occluded target in the scene, which can effectively overcome the influence of the edge and texture information of the object in the scene on the defocusing area. The method presented in this work has better adaptability to the focus degree evaluation of the refocusing image of the light field.
      Corresponding author: Liu Bin, liubin414605032@163.com
    • Funds: Project supported by the Science and Technology on Transient Impact Laboratory, China (Grant No. 614260603030817)
    [1]

    Pei Z, Zhang Y N, Yang T, Zhang X W, Yang Y 2012 Pattern Recog. 45 1637Google Scholar

    [2]

    Pei Z, Zhang Y N, Chen X, Yang Y 2013 Pattern Recog. 46 174Google Scholar

    [3]

    Tao M W, Hadap S, Malik J, Ramamoorthi R 2013 IEEE International Conference on Computer Vision (ICCV) Sydney, December 1–8, 2013 p673

    [4]

    Yang T, Zhang Y N, Tong X M, Ma W G 2013 Int. J. Adv. Robot. Syst. 10 1Google Scholar

    [5]

    Yuan Y, Zhan Q, Huang J Y, Fang J, Xiong C Y 2016 Opt. Lasers. En. 77 85Google Scholar

    [6]

    Li Y, Lin Y 2016 International Congress on Image and Signal Processing BioMedical Engineering and Informatics (CISP-BMEI) Datong, October15–17, 2016 p776

    [7]

    Song K, Liao J B, Dou Y T 2013 Adv. Mater. Res. 753 3051

    [8]

    Zhao H, Fang B, Tang Y Y 2013 IEEE International Conference on Image Processing(ICIP) Melbourne, September 15–18, 2013 p374

    [9]

    Sun Y, Duthaler S, Nelson B J 2004 Microsc. Res. Tech. 65 139Google Scholar

    [10]

    Pertuz S, Puig D, Garcia M A 2013 IEEE Trans. Image Process. 22 1242Google Scholar

    [11]

    Jing T, Li C 2010 IEEE International Conference on Image Processing Hongkong, September 26–29, 2010 p374

    [12]

    Mark A, Michael T, Gabriel T, Tina S 2005 International Conference Image Analysis and Recognition(ICIAR) Toronto, September 28–30, 2005 p174

    [13]

    Tsai D C, Chen H 2012 IEEE Trans. Image Process. 21 459Google Scholar

    [14]

    Muhammad M S, Choi T S 2011 IEEE Trans. Software Eng. 34 564

    [15]

    孙明竹, 赵新, 卢桂章 2009 58 6248Google Scholar

    Sun M Z, Zhao X, Lu G Z 2009 Acta Phys. Sin. 58 6248Google Scholar

    [16]

    Yang T, Zhang Y N, Yu J Y, Li J, Ma W G, Tong X M, Yu R, Ran L Y 2014 European Conference on Computer Vision(ECCV) Zurich, September 6–12, 2014 p1

    [17]

    Yang T, Li J, Yu J Y, Zhang Y N, Ma W G, Tong X M, Yu R, Ran L Y 2015 Sensors 15 18965Google Scholar

    [18]

    Kim C, Zimmer H, Pritch Y, Gross M, Sorkine-hornung A 2013 ACM T. Graphic. 32 73

    [19]

    Levoy M, Hanrahan P 1996 Comput. Graph-UK. 8 31

    [20]

    Anat L, Dani L, Yair W 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) New York, June 17–22, 2006 p61

    [21]

    Zhu J, Zhang D, Lu G 2010 International Conference on Digital Image Computing: Techniques & Applications (DICTA) Sydney, December 1–3, 2010 p629

  • 图 1  光场的双平面表示方法示意图

    Figure 1.  Schematic diagram of biplane representation of light field.

    图 2  多视点合成孔径成像系统示意图

    Figure 2.  Schematic diagram of a multiview synthetic aperture imaging system.

    图 3  重聚焦至场景不同深度时离焦目标的虚化特征 (a) 重聚焦至前景(花为聚焦目标物); (b) 重聚焦至后景(画报为聚焦目标物)

    Figure 3.  The blurring characteristics of defocused target when refocusing to different depth of the scene: (a) Refocus to the foreground (flower is the focus object; (b) refocus to the background (pictorial is the focus object).

    图 4  传统方法与本文方法的聚焦度判别结果对比 (a)传统方法判别标记结果; (b)本文方法的判别标记结果; (c) 传统方法聚焦区域提取结果; (d)本文方法聚焦区域提取结果

    Figure 4.  The comparison of focusing evaluation between traditional method and our method: (a) Evaluation mark results of traditional methods; (b) evaluation mark results of our method; (c) extraction results of focus areas of traditional methods; (d) extraction results of focus areas of our method.

    图 5  对焦至后景的光场重聚焦图像 (a)参考视点图像; (b)去除前景遮挡物的参考视点图像; (c)对焦至后景的重建图像; (d)去除前景遮挡物的重建图像

    Figure 5.  The light field refocusing image which focus on the background: (a) Reference viewpoint image; (b) reference viewpoint image which have removed foreground occlusion; (c) reconstructed image focusing on the background; (d) reconstructed image removing foreground occlusion.

    表 1  实验二重聚焦成像结果的质量评价

    Table 1.  Quality evaluation of refocusing imaging results for the second experiment.

    方法左侧CD盒右侧CD盒
    PSNRMSSIMPSNRMSSIM
    直接重聚焦11.93680.275412.65540.3003
    去遮挡重聚焦19.02650.644320.64240.6285
    DownLoad: CSV
    Baidu
  • [1]

    Pei Z, Zhang Y N, Yang T, Zhang X W, Yang Y 2012 Pattern Recog. 45 1637Google Scholar

    [2]

    Pei Z, Zhang Y N, Chen X, Yang Y 2013 Pattern Recog. 46 174Google Scholar

    [3]

    Tao M W, Hadap S, Malik J, Ramamoorthi R 2013 IEEE International Conference on Computer Vision (ICCV) Sydney, December 1–8, 2013 p673

    [4]

    Yang T, Zhang Y N, Tong X M, Ma W G 2013 Int. J. Adv. Robot. Syst. 10 1Google Scholar

    [5]

    Yuan Y, Zhan Q, Huang J Y, Fang J, Xiong C Y 2016 Opt. Lasers. En. 77 85Google Scholar

    [6]

    Li Y, Lin Y 2016 International Congress on Image and Signal Processing BioMedical Engineering and Informatics (CISP-BMEI) Datong, October15–17, 2016 p776

    [7]

    Song K, Liao J B, Dou Y T 2013 Adv. Mater. Res. 753 3051

    [8]

    Zhao H, Fang B, Tang Y Y 2013 IEEE International Conference on Image Processing(ICIP) Melbourne, September 15–18, 2013 p374

    [9]

    Sun Y, Duthaler S, Nelson B J 2004 Microsc. Res. Tech. 65 139Google Scholar

    [10]

    Pertuz S, Puig D, Garcia M A 2013 IEEE Trans. Image Process. 22 1242Google Scholar

    [11]

    Jing T, Li C 2010 IEEE International Conference on Image Processing Hongkong, September 26–29, 2010 p374

    [12]

    Mark A, Michael T, Gabriel T, Tina S 2005 International Conference Image Analysis and Recognition(ICIAR) Toronto, September 28–30, 2005 p174

    [13]

    Tsai D C, Chen H 2012 IEEE Trans. Image Process. 21 459Google Scholar

    [14]

    Muhammad M S, Choi T S 2011 IEEE Trans. Software Eng. 34 564

    [15]

    孙明竹, 赵新, 卢桂章 2009 58 6248Google Scholar

    Sun M Z, Zhao X, Lu G Z 2009 Acta Phys. Sin. 58 6248Google Scholar

    [16]

    Yang T, Zhang Y N, Yu J Y, Li J, Ma W G, Tong X M, Yu R, Ran L Y 2014 European Conference on Computer Vision(ECCV) Zurich, September 6–12, 2014 p1

    [17]

    Yang T, Li J, Yu J Y, Zhang Y N, Ma W G, Tong X M, Yu R, Ran L Y 2015 Sensors 15 18965Google Scholar

    [18]

    Kim C, Zimmer H, Pritch Y, Gross M, Sorkine-hornung A 2013 ACM T. Graphic. 32 73

    [19]

    Levoy M, Hanrahan P 1996 Comput. Graph-UK. 8 31

    [20]

    Anat L, Dani L, Yair W 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) New York, June 17–22, 2006 p61

    [21]

    Zhu J, Zhang D, Lu G 2010 International Conference on Digital Image Computing: Techniques & Applications (DICTA) Sydney, December 1–3, 2010 p629

  • [1] Wu Wan-Ling, Wang Xiang-Ke, Yu Hua-Kang, Li Zhi-Yuan. Sub-wavelength focused light and optical trapping application based on two-mode interference from an optical micro-/nanofiber. Acta Physica Sinica, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] Duan Mei-Gang, Zhao Ying, Zuo Hao-Yi. Focusing scattering light field with different states based on iterative algorithm. Acta Physica Sinica, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [3] Jiang Chi, Geng Tao. The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle. Acta Physica Sinica, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [4] Li Chun-Lei, Xu Yan, Zheng Jun, Wang Xiao-Ming, Yuan Rui-Yang, Guo Yong. Light-field assisted spin-polarized transport properties in magnetic-electric barrier structures. Acta Physica Sinica, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [5] Xia Zheng-De, Song Na, Liu Bin, Pan Jin-Xiao, Yan Wen-Min, Shao Zi-Hui. Dense light field reconstruction algorithm based on dictionary learning. Acta Physica Sinica, 2020, 69(6): 064201. doi: 10.7498/aps.69.20191621
    [6] Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Physica Sinica, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [7] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [8] Tang Qian, Zhao Bao-Chang, Qiu Yue-Hong, Zhang Chun-Min, Mu Ting-Kui. Technology of polarization interference imaging spectral based on pupil division and angle shear. Acta Physica Sinica, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [9] Yang Hao, Feng Guo-Ying, Zhu Qi-Hua, Zhang Da-Yong, Zhou Shou-Huan. Study on trapping force of focused optical field on the microsphere with the FDTD method. Acta Physica Sinica, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [10] Liu Yun-Quan, Zhang Jie, Wu Hui-Chun, Sheng Zheng-Ming. Three dimensional pondermotive scattering of ultrashort electron beam in the field of focused ultraintense laser pulse. Acta Physica Sinica, 2006, 55(3): 1176-1180. doi: 10.7498/aps.55.1176
    [11] Yi Xu-Nong, Hu Wei, Luo Hai-Lu, Zhu Jing. Study of small-scale self-focusing in laser beams by high-order contrast. Acta Physica Sinica, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [12] Chen Min, Xiao Ti-Qiao, Luo Yu-Yu, Liu Li-Xiang, Wei Xun, Du Guo-Hao, Xu Hong-Jie. Phase-contrast imaging with microfocus x-ray source. Acta Physica Sinica, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [13] Peng Zhi-Tao, Jing Feng, Liu Lan-Qin, Zhu Qi-Hua, Chen Bo, Zhang Kun, Liu Hua, hang Qing-Quan, Cheng Xiao-Feng, Jiang Dong-Bin, Liu Hong-Jie, Peng Han Sheng. Power spectra density estimation of quality of the laserbeam passing through an selffocusing media. Acta Physica Sinica, 2003, 52(1): 87-90. doi: 10.7498/aps.52.87
    [14] Liang Yan-Mei, Zhai Hong-Chen, Chang Sheng-Jiang, Zhang Si-Yuan. Color image segmentation based on the principle of maximum degree of membership. Acta Physica Sinica, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
    [15] WANG ZHONG-QING. HIGHER POWER SQUEEZING EFFECTS FOR ODD AND EVEN q-COHERENT STATES. Acta Physica Sinica, 2001, 50(4): 690-692. doi: 10.7498/aps.50.690
    [16] SHE WEI-LONG, HE SUI-RONG, WANG HE-ZHOU, YU ZHEN-XIN, MO DANG. PHOTOREFRACTIVE ASYMMETRICAL SELF-DEFOCUSING INDUCED BY THERMAL SELF-FOCUSING. Acta Physica Sinica, 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
    [17] MA JING-XIU, XU ZHI-ZHAN. THEORY OF RESONANT SELF-FOCUSING. Acta Physica Sinica, 1987, 36(1): 1-9. doi: 10.7498/aps.36.1
    [18] GUO CHANG-LIN. DIFFRACTION GEOMETRY OF MONOCHROMATIC X RAY QUADRUPLE FOCUSING CAMERA. Acta Physica Sinica, 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
    [19] MA XING-XIAO, HU ZHAO-LIN. THE KINETIC TREATMENT OF ISOTOPE ENRICHMENT PROCESS UNDER FOCUSED IR LASER PULSE. Acta Physica Sinica, 1978, 27(6): 645-650. doi: 10.7498/aps.27.645
    [20] HO KUO-CHU. PERIODIC FOCUSING OF HIGH CURRENT ELECTRON BEAMS. Acta Physica Sinica, 1958, 14(5): 376-392. doi: 10.7498/aps.14.376
Metrics
  • Abstract views:  9156
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2019
  • Accepted Date:  08 July 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map