搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电弧增材成形中熔积层表面形貌对电弧形态影响的仿真

周祥曼 张海鸥 王桂兰 柏兴旺

引用本文:
Citation:

电弧增材成形中熔积层表面形貌对电弧形态影响的仿真

周祥曼, 张海鸥, 王桂兰, 柏兴旺

Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming

Zhou Xiang-Man, Zhang Hai-Ou, Wang Gui-Lan, Bai Xing-Wang
PDF
导出引用
  • 电弧增材成形常采用单道多层或多道搭接的熔积方式, 不同的熔积方式下对应的熔积层表面形貌不同, 从而影响电弧的形态及其传热传质过程. 本文建立了纯氩保护电弧增材成形的电弧磁流体动力学三维数值模型, 以及不同表面形貌的熔积层模型, 并在保持阳极与阴极之间距离和熔积电流不变的条件下, 通过模拟计算获得增材成形特有的单道和多道搭接熔积条件下的不同表面形貌对应的电弧形态以及相应的温度场、流场、电流密度、电磁力、电弧压力分布. 数值模拟结果表明: 平面基板上起弧情况下电弧中心具有较高的温度、速度、电流密度以及压强; 单道多层熔积情况下熔积层数对电弧的各个参量影响较小; 多道搭接熔积情况下电弧呈非对称分布, 电弧中心温度较前两者低, 电流密度、电磁力和电弧压强的分布偏向熔积层一侧.
    The stacking deposition and the overlapping deposition are usually employed in arc based additive forming process, which will result in different surface topographies of deposited layer. Consequently, the shape and state, heat and mass transfer of electric arc will be affected by the surface topography of deposited layer. A three-dimensional numerical model of electric arc based on magnetic fluid dynamics, local thermodynamic equilibrium and optical thin assumption for arc based additive forming process with pure argon shielding gas is presented. Simultaneously, four kinds of deposited layer model with different surface topographies are established, which are the deposited layer models of planar substrate, namely the substrate without weld bead, deposited layer model of single-pass single-layer, deposited layer model of single-pass two-layers, and deposited layer model of overlapping. The numerical calculation is performed on condition that deposition current and the distance between the electrodes are constant. And the simulation results include the profile of electric arc, corresponding temperature field, flow field, current density, electromagnetic force, and the arc pressure distribution. The temperature field of planar substrate accords well with other researcher's experimental result, and the profiles of electric arc are in good agreement with images captured by high-speed camera. Surface topography of deposited layer plays a decisive role in determining the profile of electric arc under the same process conditions. The comparison of evolvement among the distributions on specified paths shows that the electric arc of planar substrate has higher temperature, velocity, current density and pressure in the arc center, arising from completely symmetrical deposition layer model and smaller contact area between the arc and the substrate; the number of layers of single-pass multi-layer deposited layer has little influence on various parameters of electric arc, but because the deposited layer height changes, the temperature and pressure on the outside of deposited layer have small deviation; asymmetric arc profile will form when the overlapping deposition is performed. There is a relatively low temperature in the arc center, resulting from larger contact area between the arc and the surface of deposited layer. In addition, the distributions of current density, electromagnetic force and pressure deflect to the deposited layer. The above conclusions can provide a theoretical basis for basic research and process decision of arc based additive forming, and it can also provide the parameters for the subsequent weld pool dynamics and metal transfer simulation.
      通信作者: 王桂兰, zhouxman@163.com
    • 基金项目: 国家自然科学基金(批准号: 51374113, 51175203, 51505210)资助的课题.
      Corresponding author: Wang Gui-Lan, zhouxman@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51175203, 51374113, 51505210).
    [1]

    Zhang H, Wang X P, Wang G L, Zhang Y 2013 Rap. Proto. J. 19 387

    [2]

    Xu G, Hu J, Tsai H L 2012 J. Manuf. Sci. Eng. 134 031001

    [3]

    Wu C S, Chen M A, Lu Y F 2005 Meas. Sci. Technol. 16 2459

    [4]

    Chang Y L, Liu X L, Lu L, Babkin A S, Lee B Y, Gao F 2014 I Int. J. Adv. Manuf Technol. 70 1543

    [5]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 833

    [6]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 808

    [7]

    Rao Z H, Hu J, Liao S M, Tsai H L 2010 Int. J. Heat Mass Transfer 53 5707

    [8]

    Rao Z H, Hu J, Liao S M Tsai H L 2010 Int. J. Heat Mass Transfer 53 5722

    [9]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 44902

    [10]

    10 Murphy A B 2013 Sci. Technol. Weld. Join. 18 32

    [11]

    Murphy A B 2011 J. Phys. D: Appl. Phys. 44 194009

    [12]

    Lu F, Wang H P, Murphy A B, Carlson B E 2014 J. Heat Mass Transfer 68 215

    [13]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J 2009 J. Phys. D: Appl. Phys. 42 194006

    [14]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 2460

    [15]

    Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 64 108102]

    [16]

    Yin X Q, Gou J J, Zhang J X, Sun J T 2012 J. Phys. D: Appl. Phys. 45 285203

    [17]

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102 (in Chinese) [石玗, 郭朝博, 黄健康, 樊丁 2011 60 048102]

    [18]

    Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600

    [19]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033

    [20]

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]

    [21]

    Kong F R, Zhang H O, Wang G L 2009 Acta. Meatll. Sin. 45 415 (in Chinese) [孔凡荣, 张海鸥, 王桂兰 2009 金属学报 45 415]

    [22]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434008

    [23]

    Rao Z H, Zhou J, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 054905

    [24]

    Lowke J J, Tanaka M 2006 J. Phys. D: Appl. Phys. 39 3634

    [25]

    Jian X, Wu C S 2015 J. Heat Mass Transfer 84 839

    [26]

    Jnsson P G, Eagar T W, Szekely J 1995 Metall. Mater. Trans. B 26 383

    [27]

    Murphy A B, Tanaka M, Tashiro S, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205

    [28]

    Farmer A J D, Haddad G N, Kovitya P 1988 J. Phys. D: Appl. Phys. 21 432

  • [1]

    Zhang H, Wang X P, Wang G L, Zhang Y 2013 Rap. Proto. J. 19 387

    [2]

    Xu G, Hu J, Tsai H L 2012 J. Manuf. Sci. Eng. 134 031001

    [3]

    Wu C S, Chen M A, Lu Y F 2005 Meas. Sci. Technol. 16 2459

    [4]

    Chang Y L, Liu X L, Lu L, Babkin A S, Lee B Y, Gao F 2014 I Int. J. Adv. Manuf Technol. 70 1543

    [5]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 833

    [6]

    Hu J, Tsai H L 2007 Int. J. Heat Mass Transfer 50 808

    [7]

    Rao Z H, Hu J, Liao S M, Tsai H L 2010 Int. J. Heat Mass Transfer 53 5707

    [8]

    Rao Z H, Hu J, Liao S M Tsai H L 2010 Int. J. Heat Mass Transfer 53 5722

    [9]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 44902

    [10]

    10 Murphy A B 2013 Sci. Technol. Weld. Join. 18 32

    [11]

    Murphy A B 2011 J. Phys. D: Appl. Phys. 44 194009

    [12]

    Lu F, Wang H P, Murphy A B, Carlson B E 2014 J. Heat Mass Transfer 68 215

    [13]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J 2009 J. Phys. D: Appl. Phys. 42 194006

    [14]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 2460

    [15]

    Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 64 108102]

    [16]

    Yin X Q, Gou J J, Zhang J X, Sun J T 2012 J. Phys. D: Appl. Phys. 45 285203

    [17]

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102 (in Chinese) [石玗, 郭朝博, 黄健康, 樊丁 2011 60 048102]

    [18]

    Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600

    [19]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033

    [20]

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]

    [21]

    Kong F R, Zhang H O, Wang G L 2009 Acta. Meatll. Sin. 45 415 (in Chinese) [孔凡荣, 张海鸥, 王桂兰 2009 金属学报 45 415]

    [22]

    Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434008

    [23]

    Rao Z H, Zhou J, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 054905

    [24]

    Lowke J J, Tanaka M 2006 J. Phys. D: Appl. Phys. 39 3634

    [25]

    Jian X, Wu C S 2015 J. Heat Mass Transfer 84 839

    [26]

    Jnsson P G, Eagar T W, Szekely J 1995 Metall. Mater. Trans. B 26 383

    [27]

    Murphy A B, Tanaka M, Tashiro S, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205

    [28]

    Farmer A J D, Haddad G N, Kovitya P 1988 J. Phys. D: Appl. Phys. 21 432

  • [1] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟.  , 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [2] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播.  , 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [3] 王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁. Ar-O2混合气体电弧的数值模拟.  , 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [4] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟.  , 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [5] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟.  , 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [6] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟.  , 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [7] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [8] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [9] 石玗, 郭朝博, 黄健康, 樊丁. 脉冲电流作用下TIG电弧的数值分析.  , 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [10] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟.  , 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [13] 陆善平, 董文超, 李殿中, 李依依. 电弧特性及其对熔池形貌影响的数值模拟.  , 2009, 58(13): 94-S103. doi: 10.7498/aps.58.94
    [14] 耿少飞, 唐德礼, 赵杰, 邱孝明. 圆柱形阳极层霍尔等离子体加速器的质点网格方法模拟.  , 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [15] 袁行球, 李 辉, 赵太泽, 王 飞, 俞国扬, 郭文康, 须 平. 直流电弧等离子体炬的特性研究.  , 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [16] 邹 秀, 宫 野, 刘金远, 宫继全. 外加磁场、电流及弧柱半径对电弧螺旋不稳定性的影响.  , 2004, 53(3): 824-828. doi: 10.7498/aps.53.824
    [17] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成.  , 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [18] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟.  , 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [19] 宫继全, 宫野, 刘金远, 张鹏云. 气流对电弧螺旋不稳定性的影响.  , 2002, 51(2): 291-295. doi: 10.7498/aps.51.291
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟.  , 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  6781
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 修回日期:  2015-11-15
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map