-
A ferroelectric/ferromagnetic bilayer film model is established. The electric moment of ferroelectric layer is described by continuous scalars, and the spins of ferromagnetic layer are described by classical vectors. The thermodynamic properties, polarization and magnetization behavior are simulated by using Monte Carlo method. The temperature dependence of internal energy, specific heat, polarization and magnetization of the system under zero field are given, and the polarization and magnetization behavior of the system under an external magnetic field and under an external electric field are studied respectively. Simulation results show that the values of internal energy, specific heat, polarization and magnetization of the bilayer films under no action of external field are obviously different from each other due to the fact that their interlayer coupling coefficients are different. When the interfacial coupling is weak (Jem = 0.01), the bilayer films exhibit their own thermodynamic properties. The interaction between ferroelectric layer and ferromagnetic layer increases with the increase of interlayer coupling coefficient. When the interfacial coupling increases to a certain extent (Jem = 0.5), the bilayer film is coupled into a whole and exhibits a uniform thermodynamic behavior. The phase transition temperature of the system increases significantly. In an external magnetic field, the ferromagnetic layer shows hysteresis behavior, and the ferroelectric layer also shows hysteresis behavior. At relatively low temperature (T = 0.08), the hysteresis loop of ferromagnetic layer and ferroelectric layer exhibit bias behavior, the area of hysteresis loop of ferroelectric layer is small when the interfacial coupling is weak. With the increase of interfacial coupling, the phenomenon of bias is more obvious, and the area of hysteresis loop of ferroelectric layer also increases significantly. When the interfacial coupling reaches Jem = 0.75, the polarization behavior of the ferroelectric layer fully responds to the magnetization behavior of the ferromagnetic layer, and neither the bias phenomenon of the ferromagnetic layer nor the bias phenomenon of the ferroelectric layer is still existent. As temperature increases (T = 0.4), the phenomenon of bias disappears even if the interlayer coupling is weak. In an external electric field, the hysteresis behavior of ferromagnetic layer and the hysteresis behavior of ferroelectric layer are similar to those in an external magnetic field. The difference is that the bias phenomenon of the bilayer film still exists for weak interfacial coupling at relatively high temperature (T = 0.4). The theoretical results are in good agreement with the experimental results reported in the literature. -
Keywords:
- polarization /
- magnetization /
- loop /
- bias
[1] Schmid H 1994 Ferroelectrics 162 317Google Scholar
[2] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar
[3] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar
[4] Nan T, Hui Y, Rinaldi M, Sun N X 2013 Sci. Rep. 3 1985Google Scholar
[5] O'Handley R C, Huang J K, Bono D C, Simon J 2008 IEEE Sens. J. 8 57Google Scholar
[6] 南策文 2015 中国科学: 技术科学 45 339Google Scholar
Nan C W 2015 Sci. Sin. Tech. 45 339Google Scholar
[7] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R 2004 Science 303 661Google Scholar
[8] Ryu H, Murugavel P, Lee J H, Chae S C, Noh T W 2006 Appl. Phys. Lett. 89 102907Google Scholar
[9] Deng C Y, Zhang Y, Ma J, Lin Y H, Nan C W 2007 J. Appl. Phys. 102 074114Google Scholar
[10] Park J H, Jang H M, Kim H S, Park C G, Lee S G 2008 Appl. Phys. Lett. 92 062908Google Scholar
[11] Zavaliche F, Zheng H, Mohaddesardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793Google Scholar
[12] Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 2010 96 182501Google Scholar
[13] He H C, Zhou J P, Wang J, Nan C W 2006 Appl. Phys. Lett. 89 052904Google Scholar
[14] Leufke P M, Kruk R, Brand R A, Hahn H 2013 Phys. Rev. B 87 094416Google Scholar
[15] Zurbuchen M A, Wu T, Saha S, Mitchell J 2005 Appl. Phys. Lett. 87 232908Google Scholar
[16] 李永超, 周航, 潘丹峰, 张浩, 万建国 2015 64 097701Google Scholar
Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 097701Google Scholar
[17] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐 2018 67 017701Google Scholar
Wang J Y, Bai J Y, Luo B C, Wang S H, Jin K X, Chen C L 2018 Acta Phys. Sin. 67 017701Google Scholar
[18] Ramana E V, Zavasnik J, Graca M P F, Valente M A 2016 J. Appl. Phys. 120 074108Google Scholar
[19] Liu G, Nan C W, Xu Z K, Chen H 2005 J. Phys. D: Appl. Phys. 38 2321Google Scholar
[20] Duan C G, Velev J P, Sabirianov R F, Zhu Z, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201Google Scholar
[21] Nan C W, Liu G, Lin Y H, Chen H 2005 Phys. Rev. Lett. 94 197203Google Scholar
[22] Sukhov A, Jia C L, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201Google Scholar
-
图 7 双层膜在外电场中的滞后回线 (a)
$T = 0.08$ ,${J_{{\rm{em}}}} = 0.01$ ,$0.1$ ; (b)$T = 0.08$ ,${J_{{\rm{em}}}} = 0.5$ ,$1.0$ ; (c)$T = 0.4$ ,${J_{{\rm{em}}}} = 0.01$ ,$0.1$ ; (d)$T = 0.4$ ,${J_{{\rm{em}}}} = 0.3$ ,$0.5$ Figure 7. Magnetization and polarization loops in external electric field: (a)
$T = 0.08$ ,${J_{{\rm{em}}}} = 0.01$ ,$0.1$ ; (b)$T = 0.08$ ,${J_{{\rm{em}}}} = 0.5$ ,$1.0$ ; (c)$T = 0.4$ ,${J_{{\rm{em}}}} = 0.01$ ,$0.1$ ; (d)$T = 0.4$ ,${J_{{\rm{em}}}} = 0.3$ ,$0.5$ . -
[1] Schmid H 1994 Ferroelectrics 162 317Google Scholar
[2] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar
[3] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar
[4] Nan T, Hui Y, Rinaldi M, Sun N X 2013 Sci. Rep. 3 1985Google Scholar
[5] O'Handley R C, Huang J K, Bono D C, Simon J 2008 IEEE Sens. J. 8 57Google Scholar
[6] 南策文 2015 中国科学: 技术科学 45 339Google Scholar
Nan C W 2015 Sci. Sin. Tech. 45 339Google Scholar
[7] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A, Ramesh R 2004 Science 303 661Google Scholar
[8] Ryu H, Murugavel P, Lee J H, Chae S C, Noh T W 2006 Appl. Phys. Lett. 89 102907Google Scholar
[9] Deng C Y, Zhang Y, Ma J, Lin Y H, Nan C W 2007 J. Appl. Phys. 102 074114Google Scholar
[10] Park J H, Jang H M, Kim H S, Park C G, Lee S G 2008 Appl. Phys. Lett. 92 062908Google Scholar
[11] Zavaliche F, Zheng H, Mohaddesardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793Google Scholar
[12] Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 2010 96 182501Google Scholar
[13] He H C, Zhou J P, Wang J, Nan C W 2006 Appl. Phys. Lett. 89 052904Google Scholar
[14] Leufke P M, Kruk R, Brand R A, Hahn H 2013 Phys. Rev. B 87 094416Google Scholar
[15] Zurbuchen M A, Wu T, Saha S, Mitchell J 2005 Appl. Phys. Lett. 87 232908Google Scholar
[16] 李永超, 周航, 潘丹峰, 张浩, 万建国 2015 64 097701Google Scholar
Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 097701Google Scholar
[17] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐 2018 67 017701Google Scholar
Wang J Y, Bai J Y, Luo B C, Wang S H, Jin K X, Chen C L 2018 Acta Phys. Sin. 67 017701Google Scholar
[18] Ramana E V, Zavasnik J, Graca M P F, Valente M A 2016 J. Appl. Phys. 120 074108Google Scholar
[19] Liu G, Nan C W, Xu Z K, Chen H 2005 J. Phys. D: Appl. Phys. 38 2321Google Scholar
[20] Duan C G, Velev J P, Sabirianov R F, Zhu Z, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201Google Scholar
[21] Nan C W, Liu G, Lin Y H, Chen H 2005 Phys. Rev. Lett. 94 197203Google Scholar
[22] Sukhov A, Jia C L, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201Google Scholar
Catalog
Metrics
- Abstract views: 6635
- PDF Downloads: 0
- Cited By: 0