Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Angle-resolved photoemission studies on iron based high temperature superconductors

Zhao Lin Liu Guo-Dong Zhou Xing-Jiang

Citation:

Angle-resolved photoemission studies on iron based high temperature superconductors

Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Copper oxide superconductors and iron-based superconductors are two important families of high temperature superconductors. Their high-temperature superconductivity mechanism is a long-standing issue and still in hot debate in the field of condensed matter physics. The extensive and in-depth exploration of iron-based superconductors and their comparative study with copper oxide high-temperature superconductors are of great significance for the development of new quantum theory, the solution of high-temperature superconducting mechanism, the exploration of new superconductors and practical applications of superconductors. The macroscopic properties of materials are determined by their microscopic electronic structure. Revealing the microscopic electronic structure of high temperature superconductors is fundamental for understanding high temperature superconductivity. Angle-resolved photoelectron spectroscopy, due to its unique simultaneous energy, momentum and even spin resolving ability, has become the most direct and powerful experimental tool for detecting the microscopic electronic structure of materials, and has played an important role in the study of iron-based high-temperature superconductors. The revealing and discovery of the Fermi surface topology, superconducting energy gap and its symmetry, three-dimensionality, orbital selectivity, and electronic coupling mode in different iron-based superconductor systems provide an important basis for identifying and proposing new theory of iron-based superconductivity to solve high temperature superconductivity mechanism.
      Corresponding author: Zhao Lin, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn ; Zhou Xing-Jiang, lzhao@iphy.ac.cn;xjzhou@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300300, 2015CB921000), the National Natural Science Foundation of China (Grant No. 11334010), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant Nos. XDB07020300, XDB25000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017013).
    [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Gavaler J R 1973 Appl. Phys. Lett. 23 480

    [4]

    Bardeen J, Cooper L N, Schrieffer J T 1957 Phys. Rev 108 1175

    [5]

    Mcmillan W L 1968 Phys. Rev. 167 331

    [6]

    Bednorz J G, Mller K A 1986 Zeitschrift Fur Physik B: Condensed Matter 64 189

    [7]

    Wu M K, Ashburn J R, Torng C J, et al. 1987 Phys. Rev. Lett. 58 908

    [8]

    Zhao Z X 1987 Sci. Bull. 32 412 (in Chinese)[赵忠贤 1987 科学通报 32 412]

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hasono H 2008 J. Am. Chem. Soc. 130 3296

    [10]

    Chen X H, Wu T, Wu G, et al. 2008 Nature 453 761

    [11]

    Chen G F, Li Z, Wu D, et al. 2008 Phys. Rev. Lett. 100 247002

    [12]

    Ren Z A, Yang J, Lu W, et al. 2008 Europhys. Lett. 82 57002

    [13]

    Hfner S 1996 Photoelectron Spectroscopy (Berlin Heidelberg: Springer-Verlag)

    [14]

    Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105

    [15]

    Zhou X J, He S L, Liu G D, et al. 2018 Reports Prog. Phys. 81 062101

    [16]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [17]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [18]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [19]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [20]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538

    [21]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [22]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [23]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [24]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [25]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [26]

    Ma F J, Ji W, Hu J P, et al. 2009 Phys. Rev. Lett. 102 177003

    [27]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [28]

    Yildirim T 2008 Phys. Rev. Lett. 101 057010

    [29]

    Shibauchi T, Carrington A, Matsuda Y 2014 Ann. Rev. Con. Mater. Phys. 5 113

    [30]

    Rotter M, Tegel M, Johrendt D, et al. 2008 Phys. Rev. B 78 020503

    [31]

    Rotter M, Pangerl M, Tegel M, et al. 2008 Angew. Chem. Int. Ed. 47 7949

    [32]

    Ni N, Tillman M E, Yan J Q, et al. 2008 Phys. Rev. B 78 214515

    [33]

    Chu J H, Analytis J G, Kucharczyk C, et al. 2009 Phys. Rev. B 79 014506

    [34]

    Bud'ko S L, Ni N, Canfield P C 2009 Phys. Rev. B 79 220516R

    [35]

    Jiang S, Xing H, Xuan G, et al 2009 J. Phys.: Condens. Matter 21 382203

    [36]

    Yamazaki T, Takeshita N, Kobayashi R, et al. 2010 Phys. Rev. B 81 224511

    [37]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305

    [38]

    Yan Y J, Zhang M, Wang A F, et al. 2012 Sci. Reports 2 212

    [39]

    Chen G F, Li Z, Dong J, et al. 2008 Phys. Rev. B 78 224512

    [40]

    Liu H Y, Zhang W T, Zhao L, et al. 2008 Phys. Rev. B 78 184514

    [41]

    Liu G D, Liu H Y, Zhao L, et al. 2009 Phys. Rev. B 80 134519

    [42]

    Liu H Y, Chen G F, Zhang W T, et al. 2010 Phys. Rev. Lett. 105 027001

    [43]

    Liu D F, Zhao L, He S L, et al. 2016 Chin. Phys. Lett. 33 077402

    [44]

    Zhao L, Liu H Y, Zhang W T, et al. 2008 Chin. Phys. Lett. 25 4402

    [45]

    Evtushinsky D V, Inosov D S, Zabolotnyy V B, et al. 2009 Phys. Rev. B 79 054517

    [46]

    Wray L, Qian D, Hsieh D, et al. 2008 Phys. Rev. B 78 184508

    [47]

    Zabolotnyy V B, Inosov D S, Evtushinsky D V, et al. 2009 Nature 457 569

    [48]

    Ding H, Richard P, Nakayama K, et al. 2008 Euro. Phys. Lett. 83 47001

    [49]

    Zhang Y, Yang L X, Chen F, et al. 2010 Phys. Rev. Lett. 105 117003

    [50]

    Shimojima T, Sakaguchi F, Ishizaka K, et al. 2011 Science 332 564

    [51]

    Dong J K, Zhou S Y, Guan T Y, et al. 2010 Phys. Rev. Lett. 104 087005

    [52]

    Terashima T, Kimata M, Kurita N, et al. 2010 Phys. Rev. Lett. 104 259701

    [53]

    Hashimoto K, Serafin A, Tonegawa S, et al 2010 Phys. Rev. B 82 014526

    [54]

    Zhang S W, Ma L, Hou Y D, et al. 2010 Phys. Rev. B 81 012503

    [55]

    Malaeb W, Shimojima T, Ishida Y, et al. 2012 Phys. Rev. B 86 165117

    [56]

    Zhang Y, Ye Z R, Ge Q Q, et al. 2012 Nat. Phys. 8 371

    [57]

    Xu H C, Niu X H, Xu D F, et al. 2016 Phys. Rev. Lett. 117 157003

    [58]

    Guo J G, Jin S F, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [59]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. 2011 J. Phys. Condens. Matter 23 052203

    [60]

    Fang M H, Wang H D, Dong C H, et al. 2010 Europhys. Lett. 94 27009

    [61]

    Wang H D, Dong C H, Li Z J, et al. 2011 Europhys. Lett. 93 47004

    [62]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [63]

    Mou D X, Zhao L, Zhou X J 2011 Front. Phys. 6 410

    [64]

    Zhao L, Mou D X, Liu S Y, et al. 2011 Phys. Rev. B 83 140508

    [65]

    Zhang Y, Yang L X, Xu M, et al. 2011 Nat. Mater. 10 273

    [66]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [67]

    Kuroki K, Onari S, Arita R, et al. 2008 Phys. Rev. Lett. 101 087004

    [68]

    Mailer T A, Graser S, Hirschfeld P J, et al. 2011 Phys. Rev. B 83 100515

    [69]

    Wang F, Yang F, Gao M, et al. 2011 Europhys. Lett. 93 57003

    [70]

    Das T, Balatsky A V 2011 Phys. Rev. B 84 014521

    [71]

    He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605

    [72]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [73]

    zer M M, Thompson J R, Weiitering H H 2006 Nat. Phys. 2 173

    [74]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [75]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [76]

    Liu D F, Zhang W H, Mou D X, et al. 2012 Nat. Commun. 3 931

    [77]

    Tan S Y, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [78]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [79]

    Zhang W H, Li Z, Li F S, et al. 2014 Phys. Rev. B 89 060506

    [80]

    Ge J F, Liu Z L, Liu C H, et al. 2015 Nat. Mater. 14 285

    [81]

    He J F, Liu X, Zhang W H, et al. 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [82]

    Peng Y Y, Meng J Q, Mou D X, et al. 2013 Nat. Commun. 4 2459

    [83]

    Liu X, Liu D F, Zhang W H, et al. 2014 Nat. Commun. 5 5047

    [84]

    Miyata Y, Nakayama K, Sugawara K, et al. 2015 Nat. Mater. 14 775

    [85]

    Dong X L, Jin K, Yuan D N, et al. 2015 Phys. Rev. B 92 064515

    [86]

    Zhao L, Liang A J, Yuan D N, et al. 2016 Nat. Commun. 7 10608

    [87]

    Dai Y M, Miao H, Xing L Y, et al. 2015 Phys. Rev. X 5 031035

    [88]

    Liu D F, Li C, Huang J W, et al. 2018 Phys. Rev. X 8 031033

    [89]

    Zhang H M, Zhang D, Lu X W, et al. 2017 Nat. Commun. 8 214

    [90]

    Hu Y, Xu Y, Wang Q Y, et al. 2018 Phys. Rev. B 97 224512

  • [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 12 1911

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Gavaler J R 1973 Appl. Phys. Lett. 23 480

    [4]

    Bardeen J, Cooper L N, Schrieffer J T 1957 Phys. Rev 108 1175

    [5]

    Mcmillan W L 1968 Phys. Rev. 167 331

    [6]

    Bednorz J G, Mller K A 1986 Zeitschrift Fur Physik B: Condensed Matter 64 189

    [7]

    Wu M K, Ashburn J R, Torng C J, et al. 1987 Phys. Rev. Lett. 58 908

    [8]

    Zhao Z X 1987 Sci. Bull. 32 412 (in Chinese)[赵忠贤 1987 科学通报 32 412]

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hasono H 2008 J. Am. Chem. Soc. 130 3296

    [10]

    Chen X H, Wu T, Wu G, et al. 2008 Nature 453 761

    [11]

    Chen G F, Li Z, Wu D, et al. 2008 Phys. Rev. Lett. 100 247002

    [12]

    Ren Z A, Yang J, Lu W, et al. 2008 Europhys. Lett. 82 57002

    [13]

    Hfner S 1996 Photoelectron Spectroscopy (Berlin Heidelberg: Springer-Verlag)

    [14]

    Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105

    [15]

    Zhou X J, He S L, Liu G D, et al. 2018 Reports Prog. Phys. 81 062101

    [16]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [17]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [18]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [19]

    Hsu F C, Luo J Y, Weh K W, et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [20]

    Wang X C, Liu Q Q, Lv Y X, et al. 2008 Solid State Commun. 148 538

    [21]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [22]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [23]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [24]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [25]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [26]

    Ma F J, Ji W, Hu J P, et al. 2009 Phys. Rev. Lett. 102 177003

    [27]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [28]

    Yildirim T 2008 Phys. Rev. Lett. 101 057010

    [29]

    Shibauchi T, Carrington A, Matsuda Y 2014 Ann. Rev. Con. Mater. Phys. 5 113

    [30]

    Rotter M, Tegel M, Johrendt D, et al. 2008 Phys. Rev. B 78 020503

    [31]

    Rotter M, Pangerl M, Tegel M, et al. 2008 Angew. Chem. Int. Ed. 47 7949

    [32]

    Ni N, Tillman M E, Yan J Q, et al. 2008 Phys. Rev. B 78 214515

    [33]

    Chu J H, Analytis J G, Kucharczyk C, et al. 2009 Phys. Rev. B 79 014506

    [34]

    Bud'ko S L, Ni N, Canfield P C 2009 Phys. Rev. B 79 220516R

    [35]

    Jiang S, Xing H, Xuan G, et al 2009 J. Phys.: Condens. Matter 21 382203

    [36]

    Yamazaki T, Takeshita N, Kobayashi R, et al. 2010 Phys. Rev. B 81 224511

    [37]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305

    [38]

    Yan Y J, Zhang M, Wang A F, et al. 2012 Sci. Reports 2 212

    [39]

    Chen G F, Li Z, Dong J, et al. 2008 Phys. Rev. B 78 224512

    [40]

    Liu H Y, Zhang W T, Zhao L, et al. 2008 Phys. Rev. B 78 184514

    [41]

    Liu G D, Liu H Y, Zhao L, et al. 2009 Phys. Rev. B 80 134519

    [42]

    Liu H Y, Chen G F, Zhang W T, et al. 2010 Phys. Rev. Lett. 105 027001

    [43]

    Liu D F, Zhao L, He S L, et al. 2016 Chin. Phys. Lett. 33 077402

    [44]

    Zhao L, Liu H Y, Zhang W T, et al. 2008 Chin. Phys. Lett. 25 4402

    [45]

    Evtushinsky D V, Inosov D S, Zabolotnyy V B, et al. 2009 Phys. Rev. B 79 054517

    [46]

    Wray L, Qian D, Hsieh D, et al. 2008 Phys. Rev. B 78 184508

    [47]

    Zabolotnyy V B, Inosov D S, Evtushinsky D V, et al. 2009 Nature 457 569

    [48]

    Ding H, Richard P, Nakayama K, et al. 2008 Euro. Phys. Lett. 83 47001

    [49]

    Zhang Y, Yang L X, Chen F, et al. 2010 Phys. Rev. Lett. 105 117003

    [50]

    Shimojima T, Sakaguchi F, Ishizaka K, et al. 2011 Science 332 564

    [51]

    Dong J K, Zhou S Y, Guan T Y, et al. 2010 Phys. Rev. Lett. 104 087005

    [52]

    Terashima T, Kimata M, Kurita N, et al. 2010 Phys. Rev. Lett. 104 259701

    [53]

    Hashimoto K, Serafin A, Tonegawa S, et al 2010 Phys. Rev. B 82 014526

    [54]

    Zhang S W, Ma L, Hou Y D, et al. 2010 Phys. Rev. B 81 012503

    [55]

    Malaeb W, Shimojima T, Ishida Y, et al. 2012 Phys. Rev. B 86 165117

    [56]

    Zhang Y, Ye Z R, Ge Q Q, et al. 2012 Nat. Phys. 8 371

    [57]

    Xu H C, Niu X H, Xu D F, et al. 2016 Phys. Rev. Lett. 117 157003

    [58]

    Guo J G, Jin S F, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [59]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. 2011 J. Phys. Condens. Matter 23 052203

    [60]

    Fang M H, Wang H D, Dong C H, et al. 2010 Europhys. Lett. 94 27009

    [61]

    Wang H D, Dong C H, Li Z J, et al. 2011 Europhys. Lett. 93 47004

    [62]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [63]

    Mou D X, Zhao L, Zhou X J 2011 Front. Phys. 6 410

    [64]

    Zhao L, Mou D X, Liu S Y, et al. 2011 Phys. Rev. B 83 140508

    [65]

    Zhang Y, Yang L X, Xu M, et al. 2011 Nat. Mater. 10 273

    [66]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [67]

    Kuroki K, Onari S, Arita R, et al. 2008 Phys. Rev. Lett. 101 087004

    [68]

    Mailer T A, Graser S, Hirschfeld P J, et al. 2011 Phys. Rev. B 83 100515

    [69]

    Wang F, Yang F, Gao M, et al. 2011 Europhys. Lett. 93 57003

    [70]

    Das T, Balatsky A V 2011 Phys. Rev. B 84 014521

    [71]

    He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605

    [72]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [73]

    zer M M, Thompson J R, Weiitering H H 2006 Nat. Phys. 2 173

    [74]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [75]

    Liu X, Zhao L, He S L, et al. 2015 J. Phys.: Condens. Matter 27 183201

    [76]

    Liu D F, Zhang W H, Mou D X, et al. 2012 Nat. Commun. 3 931

    [77]

    Tan S Y, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [78]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [79]

    Zhang W H, Li Z, Li F S, et al. 2014 Phys. Rev. B 89 060506

    [80]

    Ge J F, Liu Z L, Liu C H, et al. 2015 Nat. Mater. 14 285

    [81]

    He J F, Liu X, Zhang W H, et al. 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [82]

    Peng Y Y, Meng J Q, Mou D X, et al. 2013 Nat. Commun. 4 2459

    [83]

    Liu X, Liu D F, Zhang W H, et al. 2014 Nat. Commun. 5 5047

    [84]

    Miyata Y, Nakayama K, Sugawara K, et al. 2015 Nat. Mater. 14 775

    [85]

    Dong X L, Jin K, Yuan D N, et al. 2015 Phys. Rev. B 92 064515

    [86]

    Zhao L, Liang A J, Yuan D N, et al. 2016 Nat. Commun. 7 10608

    [87]

    Dai Y M, Miao H, Xing L Y, et al. 2015 Phys. Rev. X 5 031035

    [88]

    Liu D F, Li C, Huang J W, et al. 2018 Phys. Rev. X 8 031033

    [89]

    Zhang H M, Zhang D, Lu X W, et al. 2017 Nat. Commun. 8 214

    [90]

    Hu Y, Xu Y, Wang Q Y, et al. 2018 Phys. Rev. B 97 224512

  • [1] Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng. Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe. Acta Physica Sinica, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [2] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [3] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [4] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [5] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [7] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [8] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] Hao Ying-Ping, Chen Xiang-Lei, Cheng Bin, Kong Wei, Xu Hong-Xia, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation lifetime study of SmFeAsO superconductor. Acta Physica Sinica, 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [10] Zuo Tao, Zhao Xin-Jie, Wang Xiao-Kun, Yue Hong-Wei, Fang Lan, Yan Shao-Lin. High temperature superconducting filter with linear phase on LaAlO3 substrates. Acta Physica Sinica, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [11] Zhao Hong-Wei, Meng Hao, Zhang Ling-Feng, Zha Guo-Qiao, Zhou Shi-Ping. Transation of charged vortex structures in underdoped high-temperature superconductors. Acta Physica Sinica, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [12] Wu Yu-Yu, Chen Shi, Gao Xin-Yu, Andrew Thye Shen Wee, Xu Peng-Shou. Synchrotron radiation angle-resolved photoelectron spectroscopy studies of 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)] R30° surface. Acta Physica Sinica, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [13] You Yu-Xin, Zhao Zhi-Gang, Wang Jin, Liu Mei. Oscillations of Josephson-vortex flow resistance in high-Tc superconductors. Acta Physica Sinica, 2008, 57(11): 7252-7256. doi: 10.7498/aps.57.7252
    [14] Liang Fang-Ying, Liu Hong, Li Ying-Jun. Study of high temperature superconduction under pressure. Acta Physica Sinica, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [15] Chen Li, Li Hua. Study on the electronic structure and superconductivity of MgCNi3. Acta Physica Sinica, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [16] Yang Zhi-Hong, Shi Da-Ning, Luo Da-Feng. Effects of proximity coupling and substitutions for Ba-sites on the transition temperature and ARPES of high-T_c superconductors. Acta Physica Sinica, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [17] Tan Ming-Qiu, Tao Xiang-Ming, Xu Xiao-Jun, He Jun-Hui, Ye Gao-Xiang. A study on the electronic structure,superconductivity,and optical properties of MgCNi. Acta Physica Sinica, 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [18] Zhou Shi-Ping, Qu Hai, Liao Hong-Yin. . Acta Physica Sinica, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [19] Cao Tian-De, Huang Qing-Long. . Acta Physica Sinica, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
    [20] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
Metrics
  • Abstract views:  7994
  • PDF Downloads:  440
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2018
  • Accepted Date:  10 October 2018
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map