Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solubility and ion-irradiation effects of uranium in Nd2Zr2O7 pyrochlore

Wang Lie-Lin Li Jiang-Bo Xie Hua Deng Si-Hao Zhang Ke-Xin Yi Fa-Cheng

Citation:

Solubility and ion-irradiation effects of uranium in Nd2Zr2O7 pyrochlore

Wang Lie-Lin, Li Jiang-Bo, Xie Hua, Deng Si-Hao, Zhang Ke-Xin, Yi Fa-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nd2Zr2O7 pyrochlore with higher physicochemical and radiation stability has been considered as a host matrix for actinide immobilization of high level radioactive wastes. Uranium is a constituent and the decay-daughter product of high level radioactive wastes. It is necessary to study the solubility and ion-irradiation effect of uranium in Nd2Zr2O7 pyrochlore. The solubility of U is studied by the A site substitution in the pyrochlore structure. A series of uranium-doped zirconate pyrochlore compositions is prepared by the sol-gel-spray pyrolysis-high temperature sintering method. The structures of immobilization are studied by using X-ray diffraction (XRD) and Raman spectroscopy. The XRD and Raman spectroscopy studies reveal that the solubility limit of uranium in Nd2Zr2O7 is estimated at 10 at%. The lattice parameter of pyrochlore decreases with U content increasing, which is due to lower ionic radius of U. The immobilization structure changes from order pyrochlore to disorder structure. Further addition of U content leads to the separation of U3O8 phase in the immobilization. The U ions with high valance may be substituted at A or B site in Nd2Zr2O7 pyrochlore, which results in the A–O and B–O bond destruction. In order to keep the balance of charge, extra O ions should enter into the vacancy site, the structure of pyrochlore maybe transforms into a disorder structure. The radiation resistance of immobilization is investigated by ion-beam irradiation with 2 MeV Kr15+ ions at room temperature. The Nd2Zr2O7 and Nd1.9U0.1Zr2O7 are irradiated at doses of 1 dpa and 3 dpa, respectively. Analyses of the XRD and Raman spectroscopy data show that the Nd2Zr2O7 pyrochlore remains full pyrochlore structure even at a higher irradiation dose, which suggests that the Nd2Zr2O7 exhibits higher radiation resistance as potential immobilization. In contrast, the Nd1.9U0.1Zr2O7 immobilization shows the weaker radiation resistance, the pyrochlore structure completely transforms into a disorder fluorite structure. The A–O and B–O bonds of Nd1.9U0.1Zr2O7 pyrochlore structure are easy to destroy under ion irradiation conditions due to the disorder of pyrochlore. At the same time, the excess O ions are rearranged in U-rich pyrochlore after irradiation. Bond destruction and ion rearrangement of pyrochlore structure result in the full disorder fluorite structure. The actinides-doped pyrochlore structure is modified due to the change in physicochemical propertyof actinide, which results in the reductionof the solubility limit and radiation resistance.
      Corresponding author: Wang Lie-Lin, wanglielin@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21101129, 41502028), the Major Research Program of Sichuan Education Committee of China (Grant No. 17CZ0037), and Longshan Talent Plan of SWUST, China (Grant Nos. 18LZX649, 18LZXT03).
    [1]

    Ewing R C 1994 IAEA SR. 186 32

    [2]

    Luo S G, Yang J W, Zhu X Z 2000 Acta Chim. Sin. 58 1608 (in Chinese) [罗上庚, 杨建文, 朱鑫璋 2000 化学学报 58 1608]

    [3]

    Alain C, Constantin M 2003 Phys. Rev. B 67 174102

    [4]

    Ewing R C 2005 Earth Planet Sci. Lett. 229 165

    [5]

    Weber W J, Ewing R C 2000 Science 289 2051

    [6]

    Sickafus K E, Minervini L, Grimes R W, Valdez J A, IshimaruM, Li F, McClellan K J, Hartmann T 2000 Science 289 478

    [7]

    Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Kutty KV G 1999 J. Mater. Res. 14 4470

    [8]

    Chakoumakos B C, Ewing R C 1985 Mater. Res. Soc. Symp. Proc. 44 641

    [9]

    Belin R C, Valenza P J, Raison P E, Tillard M 2008 J. Alloy. Compd. 448 321

    [10]

    Kulkarni N K, Sampath S, Venugopal V 2000 J. Nucl. Mater. 281 95

    [11]

    Yamazaki S, Yamashita T, Matsui T, Takanori N 2001 J. Nucl. Mater. 294 183

    [12]

    Lian J, Zu X T, Kutty K V G, Chen J, Wang L M, Ewing R C 2002 Phys. Rev. B 66 054108

    [13]

    Kutty K V G, Asuvathraman R, Madhavan R R, Hrudananda J 2005 J. Phys. Chem. Solids 66 596

    [14]

    Vandenborre M T, Husson E, Chatry J P, Michel D 1983 J. Raman Spectrosc. 14 63

    [15]

    Brown S, Gupta H C, Alonso A J, Martínez-Lope M J 2004 Phys. Rev. B 69 054434

    [16]

    Mandal B P, Pandey M, Tyagi A K J 2010 J. Nucl. Mater. 406 238

    [17]

    Lang M, Zhang F X, Ewing R C, LianJ, Christina T, Wang Z W 2009 J. Mater. Res. 24 1322

    [18]

    Zhao M Z, Simon C, Middleburgh, Massey D L R, Lumpkin G R, Brendan J K, Peter E R B, Emily R 2013 J. Phys. Chem. C 117 26740

    [19]

    Wang L L, Xie H, Chen Q Y, Wang Q, Deng C, Long Y (in Chinese) [王烈林, 谢华, 陈青云, 王茜, 邓超, 龙勇 2015 原子能科学技术 49 1012]

    [20]

    Begg B D, Hess N J, McCready D E, Thevuthasanb S, Weber W J 2001 J. Nucl. Mater. 289 188

  • [1]

    Ewing R C 1994 IAEA SR. 186 32

    [2]

    Luo S G, Yang J W, Zhu X Z 2000 Acta Chim. Sin. 58 1608 (in Chinese) [罗上庚, 杨建文, 朱鑫璋 2000 化学学报 58 1608]

    [3]

    Alain C, Constantin M 2003 Phys. Rev. B 67 174102

    [4]

    Ewing R C 2005 Earth Planet Sci. Lett. 229 165

    [5]

    Weber W J, Ewing R C 2000 Science 289 2051

    [6]

    Sickafus K E, Minervini L, Grimes R W, Valdez J A, IshimaruM, Li F, McClellan K J, Hartmann T 2000 Science 289 478

    [7]

    Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Kutty KV G 1999 J. Mater. Res. 14 4470

    [8]

    Chakoumakos B C, Ewing R C 1985 Mater. Res. Soc. Symp. Proc. 44 641

    [9]

    Belin R C, Valenza P J, Raison P E, Tillard M 2008 J. Alloy. Compd. 448 321

    [10]

    Kulkarni N K, Sampath S, Venugopal V 2000 J. Nucl. Mater. 281 95

    [11]

    Yamazaki S, Yamashita T, Matsui T, Takanori N 2001 J. Nucl. Mater. 294 183

    [12]

    Lian J, Zu X T, Kutty K V G, Chen J, Wang L M, Ewing R C 2002 Phys. Rev. B 66 054108

    [13]

    Kutty K V G, Asuvathraman R, Madhavan R R, Hrudananda J 2005 J. Phys. Chem. Solids 66 596

    [14]

    Vandenborre M T, Husson E, Chatry J P, Michel D 1983 J. Raman Spectrosc. 14 63

    [15]

    Brown S, Gupta H C, Alonso A J, Martínez-Lope M J 2004 Phys. Rev. B 69 054434

    [16]

    Mandal B P, Pandey M, Tyagi A K J 2010 J. Nucl. Mater. 406 238

    [17]

    Lang M, Zhang F X, Ewing R C, LianJ, Christina T, Wang Z W 2009 J. Mater. Res. 24 1322

    [18]

    Zhao M Z, Simon C, Middleburgh, Massey D L R, Lumpkin G R, Brendan J K, Peter E R B, Emily R 2013 J. Phys. Chem. C 117 26740

    [19]

    Wang L L, Xie H, Chen Q Y, Wang Q, Deng C, Long Y (in Chinese) [王烈林, 谢华, 陈青云, 王茜, 邓超, 龙勇 2015 原子能科学技术 49 1012]

    [20]

    Begg B D, Hess N J, McCready D E, Thevuthasanb S, Weber W J 2001 J. Nucl. Mater. 289 188

  • [1] Chen Yu-Peng, Shi Lu-Lin, Wang Yu-Yu, Cheng Rui, Yang Jie, Chen Liang-Wen, Fan Wei-Li, Dong Jun-Yu. Internal structural changes in crystals induced by GeV heavy ion beam irradiation of LiF. Acta Physica Sinica, 2024, 73(15): 156401. doi: 10.7498/aps.73.20240717
    [2] Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie. Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [3] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Chen Yi-Qiang, Lu Guo-Guang, Huang Yun. Damage mechanism of SiC Schottky barrier diode irradiated by heavy ions. Acta Physica Sinica, 2022, 71(17): 176101. doi: 10.7498/aps.71.20220628
    [4] Li Su-Fen, Li Kai-Le, Zhang Quan-Hu, Cai Xing-Fu. Derivation of fast neutron multiplicity measurement equation of uranium material. Acta Physica Sinica, 2022, 71(9): 091401. doi: 10.7498/aps.71.20211653
    [5] Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Physica Sinica, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [6] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [7] Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun. Characteristics of metal ablation product by intense pulsed ion beam irradiation. Acta Physica Sinica, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [8] Ding Zhao-Nan, Yang Yi-Tao, Song Yin, Zhang Li-Qing, Gou Jie, Zhang Chong-Hong, Luo Guang-Nan. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion. Acta Physica Sinica, 2017, 66(11): 112501. doi: 10.7498/aps.66.112501
    [9] Liu Ben-Qiong, Xie Lei, Duan Xiao-Xi, Sun Guang-Ai, Chen Bo, Song Jian-Ming, Liu Yao-Guang, Wang Xiao-Lin. First principles studies of phase transition and mechanical properties of uranium. Acta Physica Sinica, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [10] Jin Bao, Cai Jun, Chen Yi-Xue. Occupancy sites of uranium atom in goethite by first-principles calculation. Acta Physica Sinica, 2013, 62(8): 087101. doi: 10.7498/aps.62.087101
    [11] Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurement and analysis of neutron capture rate of U-238 in an alternate depleted uranium/polyethylene system. Acta Physica Sinica, 2012, 61(10): 102801. doi: 10.7498/aps.61.102801
    [12] Sun Jia-Fa, Wang Wei. Phonon softening and superconductivity of -pyrochlore oxide superconductors AOs2O6 (A=K, Rb). Acta Physica Sinica, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [13] Lu Xi-Rui, Dong Fa-Qin, Hu Song, Wang Xiao-Li, Wu Yan-Lin. Phase and chemical stability of simulated waste forms Gd2Zr2-xCexO7(0≤ x≤ 2.0). Acta Physica Sinica, 2012, 61(15): 152401. doi: 10.7498/aps.61.152401
    [14] Duan Tao, Lu Xi-Rui, Liu Xiao-Nan, Zhu Wen-Kun, Huang Ye-Ju. Relation of containment capacity with phase composition, density and Vickers hardness of simulated waste forms Gd2-xNdxZr2O7(Nd=An(Ⅲ), 0≤ x ≤ 2.0). Acta Physica Sinica, 2012, 61(21): 212801. doi: 10.7498/aps.61.212801
    [15] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [16] Song Yin, Wang Zhi-Guang, Wei Kong-Fang, Zhang Chong-Hong, Liu Chun-Bao, Zang Hang, Zhou Li-Hong. Effects of annealing on the photoluminescence of He ion implanted sapphire after 230 MeV Pb ion irradiation. Acta Physica Sinica, 2007, 56(1): 551-555. doi: 10.7498/aps.56.551
    [17] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Two-dimension numerical research on the ablation of target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [18] Sun You-Mei, Liu Jie, Zhang Chong-Hong, Wang Zhi-Guang, Jin Yun-Fan, Duan Jing-Lai, Song Yin. Electronic energy loss of the latent track in heavy ion-irradiated polyimide. Acta Physica Sinica, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [19] Su Liang-Bi, Yang Wei-Qiao, Dong Yong-Jun, Xu Jun, Zhou Guo-Qing. Distribution and spectrum properties of uranium in U:CaF2 crystal. Acta Physica Sinica, 2004, 53(11): 3956-3960. doi: 10.7498/aps.53.3956
    [20] SPONTANEOUS FISSION OF URANIUM. Acta Physica Sinica, 1953, 9(1): 3-14. doi: 10.7498/aps.9.3
Metrics
  • Abstract views:  6212
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2018
  • Accepted Date:  25 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map