-
The spontaneous emission rate and the energy level shift of a quantum dot in any micro-nanostructures can be expressed by the classical dyadic Green's function. However, the real part of the dyadic Green's function is divergent, when the source point and the field point are at the same position. This leads to an unphysical divergent level shift. Theoretically, the dyadic Green's function can be decomposed into a homogeneous part and a scattering part. Traditionally, the homogeneous field contribution is introduced into the definition of the transition frequency and the only need is to consider the effect of the scattering part which is non-divergent. Another renormalization method is to average the Green tensor over the volume of the quantum dot. In this work, a finite element method is proposed to address this problem. The renormalized dyadic Green function is expressed by the averaged radiation field of a point dipole source over the quantum dot volume. For the vacuum case, numerical results of the renormalized Green tensor agree well with the analytical ones. For the nanosphere model, the renormalized scattering Green tensor, which is the difference between the renormalized Green tensor and the analytical renormalized one in homogeneous space, agrees well with the analytical scattering Green tensor in the center of the quantum dot. Both of the above models clearly demonstrate the validity and accuracy of our method. Compared with the previous scattering Green function method where two different finite element runs are needed for one frequency point, our renormalization method just needs one single run. This greatly reduces the computation burden. Applying the theory to a gap plasmonic nano-cavity, we find extremely large modifications for the spontaneous emission rate and the energy level shift which are independent of the size of the quantum dot. For frequency around the higher order mode of the nano-cavity, spontaneous emission enhancement is about Г/Г0 2.02106 and the energy level shift is about △ 1000 meV for a dipole moment 24D. These findings are instructive in the fields of quantum light-matter interactions.
-
Keywords:
- finite element method /
- renormalized Green function /
- spontaneous emission rate /
- energy level shift
[1] Berestetskii V B, Lifshitz E M, Pitaevskiǐ L P 1982 Quantum Electrodynamics (2nd Ed.) (England:Butterworth-Heinemann) pp159-165
[2] Tannoudji C C, Roc D J, Grynberg G 1997 Photons and Atoms:Introduction to Quantum Electrodynamics (New York:John Wiley Sons) pp197-200
[3] Milonni P W 1993 The Quantum Vacuum:An Introduction to Quantum Electrodynamics (San Diego:Academic Press) pp78-107
[4] Wang X H, Wang R Z, Gu B Y, Yang G Z 2002 Phys. Rev. Lett. 88 093902
[5] Zhou Y S, Wang X H, Gu B Y, Wang F H 2006 Phys. Rev. Lett. 96 103601
[6] Wang X H, Gu B Y (in Chinese) [王雪华, 顾本源 2005 物理 34 18]
[7] Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2014 63 094205]
[8] Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 66 014202]
[9] Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809
[10] Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205
[11] Xie S Y, Yang Y P, Lin Z X, Wu X 1999 Acta Phys. Sin. 48 1459 (in Chinese) [谢双媛, 羊亚平, 林志新, 吴翔 1999 48 1459]
[12] Yang Y P, Lin Z X, Xie S Y, Feng W G, Wu X 1999 Acta Phys. Sin. 48 603 (in Chinese) [羊亚平, 林志新, 谢双媛, 冯伟国, 吴翔 1999 48 603]
[13] Huang Y G, Chen G Y, Jin C J, Liu W M, Wang X H 2012 Phys. Rev. A 85 053827
[14] Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mllen K, Moerner W E 2009 Nature Photon. 3 654
[15] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601
[16] Li M, Cushing S K, Wu N Q 2015 Analyst 140 386
[17] Taylor A B, Zijlstra P 2017 ACS Sens. 2 1103
[18] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X G, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S J 2012 Science 337 450
[19] Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204
[20] Xu H X, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357
[21] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901
[22] Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401
[23] Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225
[24] Gonzlez-Tudela A, Huidobro P A, Martn-Moreno L, Tejedor C, Garca-Vidal F J 2014 Phys. Rev. B 89 041402
[25] Delga A, Feist J, Bravo-Abad J, Garcia-Vidal F J 2014 Phys. Rev. Lett. 112 253601
[26] Zhao Y J, Tian M, Wang X Y, Yang H, Zhao H P, Huang Y G 2018 Opt. Express 26 1390
[27] van Vlack C, Kristensen P T, Hughes S 2012 Phys. Rev. B 85 075303
[28] Yaghjian A D 1980 Proc. IEEE 68 248
[29] Huttner B, Barnett S M 1992 Phys. Rev. A 46 4306
[30] Scheel S, Knll L, Welsch D G 1999 Phys. Rev. A 60 4094
[31] Scheel S, Knll L, Welsch D G, Barnett S M 1999 Phys. Rev. A 60 1590
[32] de Vries P, van Coevorden D V, Lagendijk A 1998 Rev. Mod. Phys. 70 447
[33] Dung H T, Buhmann S Y, Knll L, Welsch D, Scheel S, Kstel J 2003 Phys. Rev. A 68 043816
[34] Chaumet P C, Sentenac A, Rahmani A 2004 Phys. Rev. E 70 036606
[35] van Vlack C, Hughes S 2012 Opt. Lett. 37 2880
[36] Martin O J F, Piller N B. 1998 Phys. Rev. E 58 3909
[37] Tannoudji C C, Roc D J, Grynberg G 1992 Atom-Photon Interactions:Basic Processes and Applications (New York:John Wiley Sons) pp165-205
[38] Agarwal G S 1974 Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Berlin, Heidelberg:Springer) pp17-23
[39] Jin J M 2014 The Finite Element Method in Electromagnetics (3rd Ed.) (New York:Wiley-IEEE Press) pp1-188
[40] Benjamin G, Jrmy B, MartF, Olivier J 2015 Laser Photon. Rev. 9 577
[41] Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mrk J 2010 Phys. Rev. B 81 125431
[42] https://www.comsol.com/[2018-5-6]
[43] Bai Q, Perrin M, Sauvan C, Hugonin J P, Lalanne P 2013 Opt. Express 21 27371
[44] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623
[45] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913
[46] Yang C J, An J H 2017 Phys. Rev. B 95 161408
-
[1] Berestetskii V B, Lifshitz E M, Pitaevskiǐ L P 1982 Quantum Electrodynamics (2nd Ed.) (England:Butterworth-Heinemann) pp159-165
[2] Tannoudji C C, Roc D J, Grynberg G 1997 Photons and Atoms:Introduction to Quantum Electrodynamics (New York:John Wiley Sons) pp197-200
[3] Milonni P W 1993 The Quantum Vacuum:An Introduction to Quantum Electrodynamics (San Diego:Academic Press) pp78-107
[4] Wang X H, Wang R Z, Gu B Y, Yang G Z 2002 Phys. Rev. Lett. 88 093902
[5] Zhou Y S, Wang X H, Gu B Y, Wang F H 2006 Phys. Rev. Lett. 96 103601
[6] Wang X H, Gu B Y (in Chinese) [王雪华, 顾本源 2005 物理 34 18]
[7] Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2014 63 094205]
[8] Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 66 014202]
[9] Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809
[10] Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205
[11] Xie S Y, Yang Y P, Lin Z X, Wu X 1999 Acta Phys. Sin. 48 1459 (in Chinese) [谢双媛, 羊亚平, 林志新, 吴翔 1999 48 1459]
[12] Yang Y P, Lin Z X, Xie S Y, Feng W G, Wu X 1999 Acta Phys. Sin. 48 603 (in Chinese) [羊亚平, 林志新, 谢双媛, 冯伟国, 吴翔 1999 48 603]
[13] Huang Y G, Chen G Y, Jin C J, Liu W M, Wang X H 2012 Phys. Rev. A 85 053827
[14] Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mllen K, Moerner W E 2009 Nature Photon. 3 654
[15] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601
[16] Li M, Cushing S K, Wu N Q 2015 Analyst 140 386
[17] Taylor A B, Zijlstra P 2017 ACS Sens. 2 1103
[18] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X G, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S J 2012 Science 337 450
[19] Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204
[20] Xu H X, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357
[21] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901
[22] Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401
[23] Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225
[24] Gonzlez-Tudela A, Huidobro P A, Martn-Moreno L, Tejedor C, Garca-Vidal F J 2014 Phys. Rev. B 89 041402
[25] Delga A, Feist J, Bravo-Abad J, Garcia-Vidal F J 2014 Phys. Rev. Lett. 112 253601
[26] Zhao Y J, Tian M, Wang X Y, Yang H, Zhao H P, Huang Y G 2018 Opt. Express 26 1390
[27] van Vlack C, Kristensen P T, Hughes S 2012 Phys. Rev. B 85 075303
[28] Yaghjian A D 1980 Proc. IEEE 68 248
[29] Huttner B, Barnett S M 1992 Phys. Rev. A 46 4306
[30] Scheel S, Knll L, Welsch D G 1999 Phys. Rev. A 60 4094
[31] Scheel S, Knll L, Welsch D G, Barnett S M 1999 Phys. Rev. A 60 1590
[32] de Vries P, van Coevorden D V, Lagendijk A 1998 Rev. Mod. Phys. 70 447
[33] Dung H T, Buhmann S Y, Knll L, Welsch D, Scheel S, Kstel J 2003 Phys. Rev. A 68 043816
[34] Chaumet P C, Sentenac A, Rahmani A 2004 Phys. Rev. E 70 036606
[35] van Vlack C, Hughes S 2012 Opt. Lett. 37 2880
[36] Martin O J F, Piller N B. 1998 Phys. Rev. E 58 3909
[37] Tannoudji C C, Roc D J, Grynberg G 1992 Atom-Photon Interactions:Basic Processes and Applications (New York:John Wiley Sons) pp165-205
[38] Agarwal G S 1974 Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Berlin, Heidelberg:Springer) pp17-23
[39] Jin J M 2014 The Finite Element Method in Electromagnetics (3rd Ed.) (New York:Wiley-IEEE Press) pp1-188
[40] Benjamin G, Jrmy B, MartF, Olivier J 2015 Laser Photon. Rev. 9 577
[41] Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mrk J 2010 Phys. Rev. B 81 125431
[42] https://www.comsol.com/[2018-5-6]
[43] Bai Q, Perrin M, Sauvan C, Hugonin J P, Lalanne P 2013 Opt. Express 21 27371
[44] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623
[45] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913
[46] Yang C J, An J H 2017 Phys. Rev. B 95 161408
Catalog
Metrics
- Abstract views: 6257
- PDF Downloads: 117
- Cited By: 0