Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hyperfine structure effect on circular polarization of X-ray radiation

Chen Zhan-Bin Dong Chen-Zhong

Citation:

Hyperfine structure effect on circular polarization of X-ray radiation

Chen Zhan-Bin, Dong Chen-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • During the last decades, the electron impact excitation (EIE) process has aroused much interest in various research areas. This process is crucial to the diagnoses of astrophysical and laboratory plasmas. Moreover, the EIE studies play an important role in understanding the quantum electrodynamic, many-electron, and hyperfine interaction effects in heavy atomic systems. As is well known, when ions are excited by collisions with a unidirectional beam of electrons, the magnetic sublevels of the excited state may be populated with nonstatistical probability. In the decay of the excited state, the emitted radiation is found to be anisotropic and polarized. From the analysis of the polarization, valuable information can be obtained. These properties have become indispensable tools for the diagnosis of plasma state and the analysis of complex spectrum formation mechanism. Up to now, however, most of studies have dealt with the linear polarization of X-ray radiation. Fewer publications have reported the circular polarization. Moreover, theoretical studies of the characteristic X-ray emission have just dealt with ions having zero nuclear spin, or have simply omitted all contributions that arise from such a spin. It is known that some kinds of ions each have a nuclear spin I 0. Owing to the hyperfine coupling, new decay channel will be open, namely, hyperfine-induced transition. It is thus important to analyze how the hyperfine interaction affects the polarization properties of X-ray radiation. In this study, we present a systematically theoretical analysis of the polarization and angular distribution of X-ray radiation during the hyperfine-induced transition. The calculations are performed by using a fully relativistic distorted-wave method. Special attention is paid to the studies of angular correlations and polarization properties of the 1s2p 3P2 Fi=3/2 1s2 1S Ff=1/2 decay for highly charged He-like Sc19+ and 205Tl79+ ions with nuclear spin I=1/2 following impact excitation by a completely longitudinally-polarized electron beam. Two effects, i.e.the BI and the mutipole mixing between the leading M2 decay and hyperfine-induced E1 decay, on the polarization of the emitted radiation are discussed. Our results show that both the BI and the E1-M2 interference effects may significantly affect the polarization and angular emission pattern of the transition line. For example, the BI and the E1-M2 mixing lead the circular polarization to increase by about 50% and 40% for 205Tl79+ ions, respectively. With the development of the X-ray detectors, the measurement on the polarization during the hyperfine-induced transition becomes feasible. We hope that the present results would be useful in resolving some disagreement between the theories and experiments relating to the polarization properties of the X-ray radiation.
      Corresponding author: Chen Zhan-Bin, chenzb008@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504421).
    [1]

    Shahbaz A, Brvenich T J, Mller C 2010 Phys. Rev. A 82 013418

    [2]

    Indelicato P, Birkett B B, Briand J P, Charles P, Dietrich D D, Marrus R, Simionovici A 1992 Phys. Rev. Lett. 68 1307

    [3]

    Bennett S C, Wieman C E 1999 Phys. Rev. Lett. 82 2484

    [4]

    Okada K, Wada M, Nakamura T, Takamine A, Lioubimov V, Schury P, Ishida Y, Sonoda T, Ogawa M, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2008 Phys. Rev. Lett. 101 212502

    [5]

    Brandau C, Kozhuharov C, Harman Z, Mller A, Schippers S, Kozhedub Y S, Bernhardt D, Bhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Sthlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201

    [6]

    Trotsenko S, Sthlker T, Banas D, Dong C Z, Fritzsche S, Gumberidze A, Hagmann S, Hess S, Indelicato P, Kozhuharov C, Nofal M, Reuschl R, Rzadkiewicz J, Spillmann U, Surzhykov A, Trassinelli M, Weber G 2007 J. Phys. Conf. Ser. 58 141

    [7]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506

    [8]

    Sahoo B K 2006 Phys. Rev. A 74 020501

    [9]

    Cheng K T, Chen M H, Johnson W R 2008 Phys. Rev. A 77 052504

    [10]

    Zheng S D, Li B W, Li J G, Dong C Z 2009 Acta Phys. Sin. 58 1556 (in Chinese) [郑曙东, 李博文, 李冀光, 董晨钟 2009 58 1556]

    [11]

    Chen Z B 2014 Ph. D. Dissertation (Lanzhou:Northwest Normal University) (in Chinese) [陈展斌 2014 博士学位论文 (兰州:西北师范大学)]

    [12]

    Song S Q, Wang G F, Ye A P, Jiang G 2007 J. Phys. B 40 475

    [13]

    Itano W M 2006 Phys. Rev. A 73 022510

    [14]

    Thierfelder C, Schwerdtfeger P, Saue T 2007 Phys. Rev. A 76 034502

    [15]

    Zolotorev M, Budker D 1997 Phys. Rev. Lett. 78 4717

    [16]

    Henderson J R, Beiersdorfer P, Bennett C L, Chantrenne S, Knapp D A, Marrs R E, Schneider M B, Wong K L, Doschek G A, Seely J F, Brown C M, LaVilla R E, Dubau J, Levine M A 1990 Phys. Rev. Lett. 65 705

    [17]

    Gumberidze A, Sthlker T, Banaś D, Beckert K, Beller P, Beyer H F, Bosch F, Hagmann S, Kozhuharov C, Liesen D, Nolden F, Ma X, Mokler P H, Steck M, Sierpowski D, Tashenov S 2005 Phys. Rev. Lett. 94 223001

    [18]

    James G K, Slevin J A, Dziczek D, McConkey J W, Bray I 1998 Phys. Rev. A 57 1787

    [19]

    Dubau J, Garbuzov Y, Urnov A 1994 Phys. Scr. 49 39

    [20]

    Inal M K, Sampson D H, Zhang H L 1997 Phys. Scr. 55 170

    [21]

    Surzhykov A, Litvinov Y, Sthlker T, Fritzsche S 2013 Phys. Rev. A 87 052507

    [22]

    Bensaid R, Inal M K, Dubau J 2006 J. Phys. B 39 4131

    [23]

    Chen Z B, Dong C Z, Jiang J 2014 Phys. Rev. A 90 022715

    [24]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Phys. Rev. A 90 012703

    [25]

    Chen Z B, Dong C Z, Jiang J 2015 Phys. Scr. 90 054007

    [26]

    Chen Z B, Dong C Z, Jiang J, Xie L Y 2015 J. Phys. B 48 144030

    [27]

    Chen Z B, Zeng J L, Hu H W, Dong C Z 2015 J. Phys. B 48 144005

    [28]

    Chen Z B, Zeng J L, Dong C Z 2015 J. Phys. B 48 045202

    [29]

    Chen Z B, Zeng J L 2015 J. Phys. B 48 245201

    [30]

    Chen Z B, Zeng J L 2015 Eur. Phys. J. D 69 148

  • [1]

    Shahbaz A, Brvenich T J, Mller C 2010 Phys. Rev. A 82 013418

    [2]

    Indelicato P, Birkett B B, Briand J P, Charles P, Dietrich D D, Marrus R, Simionovici A 1992 Phys. Rev. Lett. 68 1307

    [3]

    Bennett S C, Wieman C E 1999 Phys. Rev. Lett. 82 2484

    [4]

    Okada K, Wada M, Nakamura T, Takamine A, Lioubimov V, Schury P, Ishida Y, Sonoda T, Ogawa M, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2008 Phys. Rev. Lett. 101 212502

    [5]

    Brandau C, Kozhuharov C, Harman Z, Mller A, Schippers S, Kozhedub Y S, Bernhardt D, Bhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Sthlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201

    [6]

    Trotsenko S, Sthlker T, Banas D, Dong C Z, Fritzsche S, Gumberidze A, Hagmann S, Hess S, Indelicato P, Kozhuharov C, Nofal M, Reuschl R, Rzadkiewicz J, Spillmann U, Surzhykov A, Trassinelli M, Weber G 2007 J. Phys. Conf. Ser. 58 141

    [7]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506

    [8]

    Sahoo B K 2006 Phys. Rev. A 74 020501

    [9]

    Cheng K T, Chen M H, Johnson W R 2008 Phys. Rev. A 77 052504

    [10]

    Zheng S D, Li B W, Li J G, Dong C Z 2009 Acta Phys. Sin. 58 1556 (in Chinese) [郑曙东, 李博文, 李冀光, 董晨钟 2009 58 1556]

    [11]

    Chen Z B 2014 Ph. D. Dissertation (Lanzhou:Northwest Normal University) (in Chinese) [陈展斌 2014 博士学位论文 (兰州:西北师范大学)]

    [12]

    Song S Q, Wang G F, Ye A P, Jiang G 2007 J. Phys. B 40 475

    [13]

    Itano W M 2006 Phys. Rev. A 73 022510

    [14]

    Thierfelder C, Schwerdtfeger P, Saue T 2007 Phys. Rev. A 76 034502

    [15]

    Zolotorev M, Budker D 1997 Phys. Rev. Lett. 78 4717

    [16]

    Henderson J R, Beiersdorfer P, Bennett C L, Chantrenne S, Knapp D A, Marrs R E, Schneider M B, Wong K L, Doschek G A, Seely J F, Brown C M, LaVilla R E, Dubau J, Levine M A 1990 Phys. Rev. Lett. 65 705

    [17]

    Gumberidze A, Sthlker T, Banaś D, Beckert K, Beller P, Beyer H F, Bosch F, Hagmann S, Kozhuharov C, Liesen D, Nolden F, Ma X, Mokler P H, Steck M, Sierpowski D, Tashenov S 2005 Phys. Rev. Lett. 94 223001

    [18]

    James G K, Slevin J A, Dziczek D, McConkey J W, Bray I 1998 Phys. Rev. A 57 1787

    [19]

    Dubau J, Garbuzov Y, Urnov A 1994 Phys. Scr. 49 39

    [20]

    Inal M K, Sampson D H, Zhang H L 1997 Phys. Scr. 55 170

    [21]

    Surzhykov A, Litvinov Y, Sthlker T, Fritzsche S 2013 Phys. Rev. A 87 052507

    [22]

    Bensaid R, Inal M K, Dubau J 2006 J. Phys. B 39 4131

    [23]

    Chen Z B, Dong C Z, Jiang J 2014 Phys. Rev. A 90 022715

    [24]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Phys. Rev. A 90 012703

    [25]

    Chen Z B, Dong C Z, Jiang J 2015 Phys. Scr. 90 054007

    [26]

    Chen Z B, Dong C Z, Jiang J, Xie L Y 2015 J. Phys. B 48 144030

    [27]

    Chen Z B, Zeng J L, Hu H W, Dong C Z 2015 J. Phys. B 48 144005

    [28]

    Chen Z B, Zeng J L, Dong C Z 2015 J. Phys. B 48 045202

    [29]

    Chen Z B, Zeng J L 2015 J. Phys. B 48 245201

    [30]

    Chen Z B, Zeng J L 2015 Eur. Phys. J. D 69 148

  • [1] Wu Rou-Lan, Li Jiu-Sheng. Terahertz metasurface absorbed by both linearly and circularly polarized waves. Acta Physica Sinica, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [2] Zhao Zhen-Yu, Liu Hai-Wen, Chen Zhi-Jiao, Dong Liang, Chang Le, Gao Meng-Ying. Dual circularly polarized Fabry-Perot antenna with metamaterial-based corner reflector for high gain and high aperture efficiency. Acta Physica Sinica, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [3] Dual Circularly Polarized Fabry-Perot Antenna with Metamaterial-based Corner Reflector for High Gain and High Aperture Efficiency. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211914
    [4] Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming. Wideband circularly-polarized bifunction devices employing composite metasurfaces. Acta Physica Sinica, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [6] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [7] Zhuang Ya-Qiang, Wang Guang-Ming, Zhang Xiao-Kuan, Zhang Chen-Xin, Cai Tong, Li Hai-Peng. Design of reflective linear-circular polarization converter based on phase gradient metasurface. Acta Physica Sinica, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [8] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [9] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Shen Yang, Yu Ji-Bao, Fan Ya, Zhang An-Xue. A circular polarization antenna designed based on the polarization conversion metasurface. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [10] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [11] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [12] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [13] Pei Li-Ya, Zuo Zhan-Chun, Wu Ling-An, Fu Pan-Ming. Macroscopic effects in stimulated Raman spectra. Acta Physica Sinica, 2013, 62(18): 184209. doi: 10.7498/aps.62.184209
    [14] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [15] Zhou Li-Xia, Yan You-Guo. Polarization effect and post-collisional interaction in (e, 2e) reaction process for He and Ar in coplanar asymmetric geometry. Acta Physica Sinica, 2008, 57(12): 7619-7622. doi: 10.7498/aps.57.7619
    [16] Wan Jian-Jie, Xie Lu-You, Dong Chen-Zhong, Jiang Jun, Yan Jun. Theoretical study of forbidden M1, M2, E2 transitions for highly charged Ni-like ions. Acta Physica Sinica, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [17] Cao Xia, Qin Hai-Yan, Cheng Li-Hua. Electro-optic effect induced by thermal poling in SiO2 ridge waveguides. Acta Physica Sinica, 2006, 55(10): 5283-5287. doi: 10.7498/aps.55.5283
    [18] Zhang Xiao-An, Zhao Yong-Tao, Li Fu-Li, Yang Zhi-Hu, Xiao Guo-Qing, Zhan Wen-Long. Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of 126Xe30+ on Ni solid surface. Acta Physica Sinica, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [19] Ge Zi-Ming, Zhou Ya-Jun, Lv Zhi-Wei, Wang Zhi-Wen. . Acta Physica Sinica, 2002, 51(3): 519-523. doi: 10.7498/aps.51.519
    [20] XING DING-YU, GONG CHANG-DE. POLARONS IN A 1:3 PEIERLS SYSTEM. Acta Physica Sinica, 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
Metrics
  • Abstract views:  5748
  • PDF Downloads:  414
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2018
  • Accepted Date:  19 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map