Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Motor imagery based on adaptive parameterless empirical wavelet transform and selective integrated classification

He Qun Wang Yu-Wen Du Shuo Chen Xiao-Ling Xie Ping

Citation:

Motor imagery based on adaptive parameterless empirical wavelet transform and selective integrated classification

He Qun, Wang Yu-Wen, Du Shuo, Chen Xiao-Ling, Xie Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Improving recognition rate of motor imagery (MI)-related electroencephalography (EEG) is of great importance for numerous brain computer interface (BCI) applications. However, the performance of a typical BCI system greatly relies on the effectiveness of the extracted features from raw EEG signals and the ability of the classifier to correctly identify different MI patterns. Therefore, in this paper, a new recognition method based on adaptive parameterless empirical wavelet transform (APEWT) and selective integrated classification model is proposed to enhance the classification accuracy of MI-related EEG signal. First, the APEWT is used to decompose EEG signals from different MI patterns into several intrinsic mode functions (IMFs), each of which contains different rhythm information over different frequency bands. Then several related modes are optimally selected based on the correlation coefficients calculated between each IMF component and the original signal to reconstruct EEG signals. Next, in order to further extract useful pattern information from both the time domain and frequency domain, the energy spectrum features of multiple time segments from the reconstructed signals and marginal spectrum features of different frequency bands corresponding to those selected modes are investigated, respectively. Finally, the extracted multiple features from time domain and frequency domain are input into the selective integrated classification model to build an MI recognition system. The selective integrated classification model consists of several extreme learning machines (ELMs) as the basic classifiers, different weights are assigned, respectively, to ELM basic classifiers based on their corresponding classification performances, and several basic ELM classifiers with good performances are selected to construct the final integrated model. The proposed method is evaluated on two public datasets, including BCI Competition Ⅱ dataset Ⅲ and BCI Competition IV dataset 2 b, and is compared with four different combination methods where different features in time domain or frequency domain in the feature extraction stage and different ELMs based classification models are considered. Experimental results demonstrate that the proposed method outperformed four combination methods and the existing methods recently reported in the literature using the same datasets in terms of classification accuracy and area under the ROC curve receiver operating characteristic metric. Specifically, our proposed method achieves the highest average classification accuracy (89.95%) in the compared methods, which indicates its better classification performance and generalization capability. In addition, the proposed method exhibits high computational efficiency, thus providing a new solution for online recognition of MI-related BCI and having the potential to be embedded in a practical system for controlling an external device.
      Corresponding author: Xie Ping, pingx@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61673336) and the Natural Science Foundation of Hebei Province, China (Grant No. F2015203372).
    [1]

    Zhang D, Li J W 2017 Sci. Technol. Rev. 35 62(in Chinese) [张丹, 李佳蔚 2017 科技导报 35 62]

    [2]

    Gao S, Wang Y, Gao X, Hong B 2014 Trans. Biomed. Eng. 61 1436

    [3]

    Abdulkader S N, Atia A, Mostafa M S M 2015 Egy. Inf. J. 16 213

    [4]

    Fang X L, Jiang Z L 2007 Acta Phys. Sin. 56 7330(in Chinese) [方小玲, 姜宗来 2007 56 7330]

    [5]

    Pfurtscheller G, da Silva F H L 1999 Cli. Neurophysiol. 110 1842

    [6]

    Lei M, Meng G, Zhang W M, Nilanjan S 2016 Acta Phys. Sin. 65 108701(in Chinese) [雷敏, 孟光, 张文明, Nilanjan Sarkar 2016 65 108701]

    [7]

    Lei M, Meng G, Zhang W M, Joshua W, Nilanjan S 2016 Entropy 18 412

    [8]

    Wang Y, Hou F Z, Dai J F, Liu X F, Li J, Wang J 2014 Acta Phys. Sin. 63 218701(in Chinese) [王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊 2014 63 218701]

    [9]

    Xu B, Song A 2008 J. Biomed. Sci. Eng. 1 64

    [10]

    Sun H W, Fu Y F, Xiong X, Yang J, Liu C W, Yu Z T 2015 Acta Automatica Sin. 41 1686(in Chinese) [孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛 2015 自动化学报 41 1686]

    [11]

    Xie P, Chen X L, Su Y P, Liang Z H, Li X L 2013 Chin. J. Biomed. Eng. 32 641(in Chinese) [谢平, 陈晓玲, 苏玉萍, 梁振虎, 李小俚 2013 中国生物医学工程学报 32 641]

    [12]

    Yang M H, Chen W Z, Li M Y 2017 Acta Automatica Sin. 43 743(in Chinese) [杨默涵, 陈万忠, 李明阳 2017 自动化学报 43 743]

    [13]

    Wu L Y, Lu H, Gao N, Wang T 2017 Chin. J. Biomed. Eng. 36 224(in Chinese) [吴林彦, 鲁昊, 高诺, 王涛 2017 生物医学工程研究 36 224]

    [14]

    Zhang X Q, Liang J 2013 Acta Phys. Sin. 62 050505(in Chinese) [张学清, 梁军 2013 62 050505]

    [15]

    Tang Z C, Sun S Q, Zhang K J 2017 Chin. J. Mech. Eng. 53 60(in Chinese) [唐智川, 孙守迁, 张克俊 2017 机械工程学报 53 60]

    [16]

    Gilles J 2013 IEEE Trans. Signal Proc. 61 3999

    [17]

    Gilles J, Heal K 2014 Multiresol. Inf. Proces 12 1450044

    [18]

    Zheng J, Pan H, Yang S, Cheng J 2017 Signal. Proces 130 305

    [19]

    Hou B W 2012 M. S. Dissertation (Xi'an: Xidian University) (in Chinese) 侯秉文 2012 硕士学位论文 (西安: 西安电子科技大学)

    [20]

    Zhao Y, Chen R, Liu W 2016 Comput. Sci. 8 177(in Chinese) [赵宇, 陈锐, 刘蔚 2016计算机科学 8 177]

    [21]

    Lindeberg T, ter Haar R B M 1994 Linear Scale-Space I: Basic Theory (Netherlands: Springer) pp1-38

    [22]

    Cai Y P, Li A H, Wang T, Yao L, Xu P 2010 J. Vibra. Eng. 4 430(in Chinese) [蔡艳平, 李艾华, 王涛, 姚良, 许平 2010 振动工程学报 4 430]

    [23]

    Huang G B, Zhu Q Y, Siew C K 2004 IEEE International Joint Conference on Neural Networks Proceedings Budapest, Hungary, July 25-29, 2004 p985

    [24]

    Huang G B, Zhu Q Y, Siew C K 2006 Neurocomput 70 489

    [25]

    Bentlemsan M, Zemouri E T T, Bouchaffra D, Yahya-Zoubir, B, Ferroudji, K 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, Jan. 27-29, 2014 p235

    [26]

    Suk H I, Lee S W 2013 Trans. Patt. Anal. Mach. Intelli 35 286

  • [1]

    Zhang D, Li J W 2017 Sci. Technol. Rev. 35 62(in Chinese) [张丹, 李佳蔚 2017 科技导报 35 62]

    [2]

    Gao S, Wang Y, Gao X, Hong B 2014 Trans. Biomed. Eng. 61 1436

    [3]

    Abdulkader S N, Atia A, Mostafa M S M 2015 Egy. Inf. J. 16 213

    [4]

    Fang X L, Jiang Z L 2007 Acta Phys. Sin. 56 7330(in Chinese) [方小玲, 姜宗来 2007 56 7330]

    [5]

    Pfurtscheller G, da Silva F H L 1999 Cli. Neurophysiol. 110 1842

    [6]

    Lei M, Meng G, Zhang W M, Nilanjan S 2016 Acta Phys. Sin. 65 108701(in Chinese) [雷敏, 孟光, 张文明, Nilanjan Sarkar 2016 65 108701]

    [7]

    Lei M, Meng G, Zhang W M, Joshua W, Nilanjan S 2016 Entropy 18 412

    [8]

    Wang Y, Hou F Z, Dai J F, Liu X F, Li J, Wang J 2014 Acta Phys. Sin. 63 218701(in Chinese) [王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊 2014 63 218701]

    [9]

    Xu B, Song A 2008 J. Biomed. Sci. Eng. 1 64

    [10]

    Sun H W, Fu Y F, Xiong X, Yang J, Liu C W, Yu Z T 2015 Acta Automatica Sin. 41 1686(in Chinese) [孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛 2015 自动化学报 41 1686]

    [11]

    Xie P, Chen X L, Su Y P, Liang Z H, Li X L 2013 Chin. J. Biomed. Eng. 32 641(in Chinese) [谢平, 陈晓玲, 苏玉萍, 梁振虎, 李小俚 2013 中国生物医学工程学报 32 641]

    [12]

    Yang M H, Chen W Z, Li M Y 2017 Acta Automatica Sin. 43 743(in Chinese) [杨默涵, 陈万忠, 李明阳 2017 自动化学报 43 743]

    [13]

    Wu L Y, Lu H, Gao N, Wang T 2017 Chin. J. Biomed. Eng. 36 224(in Chinese) [吴林彦, 鲁昊, 高诺, 王涛 2017 生物医学工程研究 36 224]

    [14]

    Zhang X Q, Liang J 2013 Acta Phys. Sin. 62 050505(in Chinese) [张学清, 梁军 2013 62 050505]

    [15]

    Tang Z C, Sun S Q, Zhang K J 2017 Chin. J. Mech. Eng. 53 60(in Chinese) [唐智川, 孙守迁, 张克俊 2017 机械工程学报 53 60]

    [16]

    Gilles J 2013 IEEE Trans. Signal Proc. 61 3999

    [17]

    Gilles J, Heal K 2014 Multiresol. Inf. Proces 12 1450044

    [18]

    Zheng J, Pan H, Yang S, Cheng J 2017 Signal. Proces 130 305

    [19]

    Hou B W 2012 M. S. Dissertation (Xi'an: Xidian University) (in Chinese) 侯秉文 2012 硕士学位论文 (西安: 西安电子科技大学)

    [20]

    Zhao Y, Chen R, Liu W 2016 Comput. Sci. 8 177(in Chinese) [赵宇, 陈锐, 刘蔚 2016计算机科学 8 177]

    [21]

    Lindeberg T, ter Haar R B M 1994 Linear Scale-Space I: Basic Theory (Netherlands: Springer) pp1-38

    [22]

    Cai Y P, Li A H, Wang T, Yao L, Xu P 2010 J. Vibra. Eng. 4 430(in Chinese) [蔡艳平, 李艾华, 王涛, 姚良, 许平 2010 振动工程学报 4 430]

    [23]

    Huang G B, Zhu Q Y, Siew C K 2004 IEEE International Joint Conference on Neural Networks Proceedings Budapest, Hungary, July 25-29, 2004 p985

    [24]

    Huang G B, Zhu Q Y, Siew C K 2006 Neurocomput 70 489

    [25]

    Bentlemsan M, Zemouri E T T, Bouchaffra D, Yahya-Zoubir, B, Ferroudji, K 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, Jan. 27-29, 2014 p235

    [26]

    Suk H I, Lee S W 2013 Trans. Patt. Anal. Mach. Intelli 35 286

  • [1] Batubayaer Ou-Yun, Zhao Yue-Jin, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Hui Mei. Adaptive non-contact robust heart rate detection method under head rotation motion. Acta Physica Sinica, 2022, 71(5): 058704. doi: 10.7498/aps.71.20211634
    [2] Jing Peng, Zhang Xue-Jun, Sun Zhi-Xin. eEpileptic electroencephalogram signal classification method based on elastic variational mode decomposition. Acta Physica Sinica, 2021, 70(1): 018702. doi: 10.7498/aps.70.20200904
    [3] Head rotation adaptive, contactless robust heart rate detection method. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211634
    [4] Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min. Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform. Acta Physica Sinica, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [5] Zhang Tao, Chen Wan-Zhong, Li Ming-Yang. Automatic seizure detection of electroencephalogram signals based on frequency slice wavelet transform and SVM. Acta Physica Sinica, 2016, 65(3): 038703. doi: 10.7498/aps.65.038703
    [6] Wang Ying, Hou Feng-Zhen, Dai Jia-Fei, Liu Xin-Feng, Li Jin, Wang Jun. Transfer entropy analysis of electroencephalogram based on adaptive template method. Acta Physica Sinica, 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [7] Zhao Yi-Bo, Zhang Xiu-Zai, Sun Xin-Yu. Adaptive identification for hyperchaotic l system based on Weiner model. Acta Physica Sinica, 2014, 63(13): 130503. doi: 10.7498/aps.63.130503
    [8] Meng Qing-Fang, Chen Yue-Hui, Feng Zhi-Quan, Wang Feng-Lin, Chen Shan-Shan. Nonlinear prediction of small scale network traffic based on local relevance vector machine regression model. Acta Physica Sinica, 2013, 62(15): 150509. doi: 10.7498/aps.62.150509
    [9] Wang Yue-Gang, Wen Chao-Bin, Yang Jia-Sheng, Zuo Zhao-Yang, Cui Xiang-Xiang. Adaptive control of chaotic systems based on model free method. Acta Physica Sinica, 2013, 62(10): 100504. doi: 10.7498/aps.62.100504
    [10] Yu Hai-Jun, Du Jian-Ming, Zhang Xiu-Lan. Wavelet transform of coherent state. Acta Physica Sinica, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [11] Gao Guo-Rong, Liu Yan-Ping, Pan Qiong. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising. Acta Physica Sinica, 2012, 61(13): 139701. doi: 10.7498/aps.61.139701
    [12] Miao Zhi-Qiang, Wang Yao-Nan. Robust adaptive radial wavelet neural network control for chaotic systems using backstepping design. Acta Physica Sinica, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [13] Wei Du-Qu, Zhang Bo. Robust suppressing chaos in permanent magnet synchronous motor with v/f control based on passivity theory. Acta Physica Sinica, 2012, 61(3): 030505. doi: 10.7498/aps.61.030505
    [14] Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [15] Zheng Gang, Zou Jian-Xiao, Xu Hong-Bing, Qin Gang. Adaptive backstepping control of chaotic property in direct-driveven permanent magnet sychronous generators for wind power. Acta Physica Sinica, 2011, 60(6): 060506. doi: 10.7498/aps.60.060506
    [16] Wei Du-Qu, Zhang Bo, Qiu Dong-Yuan, Luo Xiao-Shu. Adaptive controlling chaos in permanent magnet synchronous motor based on the LaSalle theory. Acta Physica Sinica, 2009, 58(9): 6026-6029. doi: 10.7498/aps.58.6026
    [17] Wang Kai, Zhang Hui, Chang Sheng-Jiang, Shen Jin-Yuan. Adaptive wavelet algorithm for complicated spectra data compression. Acta Physica Sinica, 2007, 56(6): 3613-3618. doi: 10.7498/aps.56.3613
    [18] Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [19] Bian Bao-Min, Yang Ling, Zhang Ping, Ji Yun-Jing, Li Zhen-Hua, Ni Xiao-Wu. General self-simulating motion mode of spherical strong shock waves in ideal gas. Acta Physica Sinica, 2006, 55(8): 4181-4187. doi: 10.7498/aps.55.4181
    [20] T. S. CHANG. MOTION OF POLES IN THE LEE MODEL. Acta Physica Sinica, 1965, 21(11): 1882-1888. doi: 10.7498/aps.21.1882
Metrics
  • Abstract views:  6691
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2018
  • Accepted Date:  13 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回
Baidu
map