-
Induced spatial incoherence technology is a beam-smoothing method with its own unique advantages for laser driven inertial confinement fusion. However, simply using the induced spatial incoherent method will induce a strong near-field intensity spatial modulation, which will threaten the safety of the operation and severely limit the maximum output capability of the device. This is also one of the main technical obstacles to applying induced spatial incoherence to a high-power laser device used for fusion. In this paper, a technique of smoothing the near-field spatial intensity modulation caused by induced spatial incoherence is introduced. By using a two-lens filter system, a homogeneous and stable near-field intensity distribution can be obtained on the premise of reserving the innate advantages of induced spatial incoherence (better far-field smoothing characteristics), thereby avoiding the damage to devices and limitation to output capacity in high power laser system using induced spatial incoherence. Based on the theoretical modeling and numerical analysis, using modulation degree, softening factor, and transmittance as evaluation parameters, the near-field light characters with three kinds of filter apertures, such as square, round, and Gaussian, are compared and analyzed. Finally, in a typical optimization result there are used 16×16 induced spatial incoherent divisions and a square aperture with 0.8 times diffraction limit width. In this case, the near-field intensity distribution is uniform, and at the same time, good smoothing effect on far-field and a high energy utilization rate are ensured. On this basis, according to the actual application of the device, the influence of the collimation error on the near-field intensity distribution is further analyzed. The results show that as long as the collimation error is less than 0.1 times the diffraction limit, the near-field quality will not be affected. The simulation analysis of the focal spot obtained by induced spatial incoherence shows that the addition of the filtering system can further improve the low frequency uniformity of the focal spot.
-
Keywords:
- induced spatial incoherent /
- beam smoothing /
- high power laser driver
[1] Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041
[2] Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)
[3] Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27
[4] Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680
[5] Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672
[6] Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098
[7] Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331
[8] Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]
[9] Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19
[10] Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057
[11] Marozas J A 2007 J. Opt. Soc. Am. A 24 74
[12] Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 63 215202]
[13] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456
[14] Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634
[15] Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162
[16] Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]
[17] Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002
[18] Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483
[19] Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66
[20] Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124
[21] Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738
-
[1] Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041
[2] Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)
[3] Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27
[4] Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680
[5] Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672
[6] Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098
[7] Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331
[8] Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]
[9] Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19
[10] Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057
[11] Marozas J A 2007 J. Opt. Soc. Am. A 24 74
[12] Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 63 215202]
[13] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456
[14] Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634
[15] Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162
[16] Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]
[17] Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002
[18] Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483
[19] Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66
[20] Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124
[21] Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738
Catalog
Metrics
- Abstract views: 5735
- PDF Downloads: 65
- Cited By: 0