-
Much interest has been aroused in quantum metrology such as quantum interferometric radar, due to its application in sub-Raleigh ranging and remote sensing. Generally, the quantum signal emitted by quantum radar will be affected by atmosphere medium. For instance, both atmospheric loss and atmospheric scintillation seriously affect the sensitivity and resolution of quantum radar. In fact, the effects of atmospheric loss on the sensitivity and resolution of quantum interferometric radar have been investigated thoroughly and completely in the past decades. However, the investigation about the influence of atmospheric scintillation is lacking until now. To realize practical quantum interferometric radar, the perturbation coming from turbulent atmosphere must be considered, thus it is necessary to investigate how the atmospheric scintillation affects the performance of quantum radar.In this paper, the influence of intensity fluctuation which is caused by atmospheric scintillation on the performance of quantum interferometric radar with entangled coherent states (ECS) is thoroughly investigated. We first introduce the physical model of quantum interferometric radar, and the dynamic evolution of quantum light field in atmosphere is obtained by solving the master equation of dissipation channel. Considering the dissipation and fluctuation caused by atmospheric scintillation, we regard the turbulent atmosphere as so-called dissipation-fluctuation channel. Moreover, according to classical statistical theory of turbulence, we derive the explicit expression of probability distribution of transmission coefficient P(T), this probability distribution of transmission cofficient, which is determined by average transmission coefficient TD and scintillation index βD2 plays a crucial role in the studying of atmospheric scintillation.The results of investigation show that atmospheric scintillation leads to the degradation of the sensitivity and resolution of ECS quantum interferometric radar at lower atmospheric loss. Under the higher lossy condition of atmosphere, atmospheric scintillation can greatly enhance the performance of quantum interferometric radar. Furthermore, the critical atmospheric transmission coefficient which determines the lower and higher loss of atmosphere keeps increasing with the increase of average photon number per pulse. Increasing the atmospheric scintillation, rather than introducing noise and degrading the performance of quantum radar, can improve the sensitivity and resolution.This anomalous phenomenon can be explained only by quantum decoherence theory. As is well known, the supersensitivity and super-resolution of quantum radar are based on the nonlocal characteristic of quantum light field, while the dissipation process will induce decoherence that leads to the loss of nonlocal characteristic, and finally degrades the performance of quantum radar. However, there have been several researches indicating that the dissipation-fluctuation channel can alleviate the decoherence effect and maintain the nonlocal characteristic of quantum light field compared with pure dissipation channel. For the evolution of quantum light field in dissipation medium, the loss of amplitude plays a crucial role at a lower loss, while the decoherence will play a dominant role at a higher loss. Consequently, the fluctuation may induce extra noise and degrade the performance of quantum radar at lower loss. For higher loss, the fluctuation can prevent the decoherence process and maintain the quantum characteristic of light field, thus the atmospheric scintillation finally improves the sensitivity and resolution of quantum radar.
-
Keywords:
- entangled coherent state /
- quantum interferometric radar /
- atmospheric scintillation /
- super-sensitivity
[1] Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]
[2] Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]
[3] Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 64 154203]
[4] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
[5] Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170
[6] Lanzagorta M 2010 Proc. SPIE 7727 77270K
[7] Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1
[8] Jehle R E, Hudson D F 1992 U.S. Patent 5 095 312 [1992-3-10]
[9] Kumar P, Grigoryan V, Vasilyev M 2007 Noise-free Amplification: towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9
[10] Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305
[11] Wang S, Ren Y C, Rao R Z, Miao X K 2017 Acta Phys. Sin. 66 150301 (in Chinese) [王书, 任益充, 饶瑞中, 苗锡奎 2017 66 150301]
[12] Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033
[13] Liu S, Jing J 2017 Opt. Express 25 15854
[14] Fang Y, Jing J 2015 New J. Phys. 17 023027
[15] Fang Y, Feng J, Cao L, et al. 2016 Appl. Phys. Lett. 108 131106
[16] Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161-162
[17] Carmichael H J 2003 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer Science and Business Media) p9
[18] Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]
[19] Tatarskii V I 1971 Jerusalem: Israel Program for Scientific Translations 1971
[20] Fante R L 1975 Proc. IEEE 63 1669
[21] Fante R L 1980 Proc. IEEE 68 1424
[22] Semenov A A, Vogel W 2009 Phys. Rev. A 80 201802
[23] Vasylyev D Y, Semenov A A, Vogel W 2012 Phys. Rev. Lett. 108 220501
[24] Rao R Z 2012 Modern Atmospheric Optics (Beijing: Beijing Science Press) pp433-442 (in Chinese)[饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第433–442页]
[25] Rao R Z 2005 The Propagation of Light in the Turbulent Atmosphere (Hefei: Anhui Science Press) pp180-183 (in Chinese) [饶瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第180–183页]
-
[1] Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]
[2] Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]
[3] Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 64 154203]
[4] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
[5] Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170
[6] Lanzagorta M 2010 Proc. SPIE 7727 77270K
[7] Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1
[8] Jehle R E, Hudson D F 1992 U.S. Patent 5 095 312 [1992-3-10]
[9] Kumar P, Grigoryan V, Vasilyev M 2007 Noise-free Amplification: towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9
[10] Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305
[11] Wang S, Ren Y C, Rao R Z, Miao X K 2017 Acta Phys. Sin. 66 150301 (in Chinese) [王书, 任益充, 饶瑞中, 苗锡奎 2017 66 150301]
[12] Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033
[13] Liu S, Jing J 2017 Opt. Express 25 15854
[14] Fang Y, Jing J 2015 New J. Phys. 17 023027
[15] Fang Y, Feng J, Cao L, et al. 2016 Appl. Phys. Lett. 108 131106
[16] Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161-162
[17] Carmichael H J 2003 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer Science and Business Media) p9
[18] Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]
[19] Tatarskii V I 1971 Jerusalem: Israel Program for Scientific Translations 1971
[20] Fante R L 1975 Proc. IEEE 63 1669
[21] Fante R L 1980 Proc. IEEE 68 1424
[22] Semenov A A, Vogel W 2009 Phys. Rev. A 80 201802
[23] Vasylyev D Y, Semenov A A, Vogel W 2012 Phys. Rev. Lett. 108 220501
[24] Rao R Z 2012 Modern Atmospheric Optics (Beijing: Beijing Science Press) pp433-442 (in Chinese)[饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第433–442页]
[25] Rao R Z 2005 The Propagation of Light in the Turbulent Atmosphere (Hefei: Anhui Science Press) pp180-183 (in Chinese) [饶瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第180–183页]
Catalog
Metrics
- Abstract views: 6636
- PDF Downloads: 145
- Cited By: 0