Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Response and resonance of bounded ocean under zonal wind forcing

Zhang Dong-Ling Lu Xu Zhang Ming

Citation:

Response and resonance of bounded ocean under zonal wind forcing

Zhang Dong-Ling, Lu Xu, Zhang Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To illustrate the formation mechanisms for the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO) as the dominant and less dominant climate patterns of the North Pacific, and correlations between their periods of oscillation and the length of the ocean in the East-West direction, this paper adopts a mid-latitude channel linear quasi-equilibrium ocean model with reduced gravity to seek the analytical solution of the ocean flow field response to zonal wind forcing, with a special focus on resonance. Main findings include that the response pattern of the bounded ocean resembles the PDO and NPGO modes during winter respectively; specifically, to the east of the west coast of the ocean, the former is characterized by a gyre in an oval shape and the latter by two gyres rotating in opposite directions in the north and the south, constituting a gyre couple; across the entire ocean, the former features basin-wide ocean general circulation, while the latter features basin-wide general circulation in the north and the south respectively, which rotate in opposite directions. The above situations can be forced by anomalous positions of mid-latitude westerlies to the north and the south respectively. The frequency (period) of ocean flow field response to zonal wind field forcing is identical to the frequency (period) of zonal wind forcing; the response is observed after zonal wind forcing while the flow field (stream function) of the response is proportional to the zonal wind in scale. When the frequency (period) of zonal wind forcing equals that of the natural frequency (period) of the ocean, resonance will happen, with the observation of the strongest ocean response; while when the two frequencies differ by wide margins, rather small response will be observed. Smaller frictions correlate with stronger resonance along with more resonance occurrences. The length of the bounded ocean in the East-West direction has an obvious effect on the natural frequency (period), namely, the frequency (period) of resonance, and plays a decisive role in determining such a frequency; the distance between two neighboring resonance periods increases as the length is reduced. Different non-linear air-sea interactions lead to the complexity of the oscillation frequencies of a random wind field, ranging from extremely low to extremely high frequencies; through the resonance, resonance period identical or similar to the natural frequency of the ocean can be identified, at which frequency the ocean flow response to wind fields is the strongest, thus determining the periods of the PDO and NPGO. The final conclusion is that such a non-linear interaction, the effect of wind field forcing on flow field, and resonance are three key factors leading to the PDO and NPGO; the analytical solution is in nature a time-varying resonant Rossby wave.
      Corresponding author: Zhang Ming, zhangm1945@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0604500).
    [1]

    Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C 1997 Bull. Amer. Meteor. Soc. 78 1069

    [2]

    Newman M, Alexander M A, Ault T R, et al. 2016 J. Climate 29 4399

    [3]

    Yang X Q, Zhu Y M, Xie Q, Ren X J, Xu G Y 2004 Chin. J. Atmos. Sci. 28 979 (in Chinese)[杨修群, 朱益民, 谢倩, 任雪娟, 徐桂玉 2004 大气科学 28 979]

    [4]

    Wu D X, Lin X P, Wan X Q, Lan J 2006 Acta Oceanol. Sin. 28 1 (in Chinese)[吴德星, 林霄沛, 万修全, 兰健 2006 海洋学报 28 1]

    [5]

    Sun D, Bryan F 2010 Climate Dynamics:Why does Climate Vary? (Washington DC:American Geophys Uninon Press) p123

    [6]

    Liu 2010 Deep-Sea Res. Ⅱ 57 1098

    [7]

    Wang S S, Guan Y P, Li Z J, Cao Y, Huang J P 2012 Acta Phys. Sin. 61 169201 (in Chinese)[王闪闪, 管玉平, Li Zhi-Jin, Cao Yi, 黄建平 2012 61 169201]

    [8]

    Liu Q Y, Li C, Hu R J 2010 Climatic Environ. Res. 15 217 (in Chinese)[刘秦玉, 李春, 胡瑞金 2010 气候与环境研究 15 217]

    [9]

    Lorenzo E D, Schneider N, Cobb K M, Franks P, Chhak K, Miller A, Mcwilliams J, Bograd S, Arango H, Curchitser E 2008 Geophys. Res. Lett. 35 L08607

    [10]

    Cummins P F, Lagerloef G S E, Mitchum G 2005 Geophys. Res. Lett. 32 L17607

    [11]

    Furtado J C, Lorenzo E D, Schneider N, Bond N A 2011 J. Climate 24 3049

    [12]

    Zhang W, Luo M 2016 Atmos. Sci. Lett. 17 437

    [13]

    Rafter P A, Sanchez S C, Ferguson J, Carriquiry J D, Druffel E R M 2017 Quaternary Sci. Rev. 160 108

    [14]

    Chhak K, Lorenzo E D 2009 J. Climate 22 1255

    [15]

    Ceballos L, Lorenzo E D, Hoyos C D 2009 J. Climate 22 5163

    [16]

    Cabanes C, Huck T, Verderee C D 2006 J. Phys. Oceanogr. 36 1739

    [17]

    Qiu B, Chen S M 2010 Deep-Sea Res. Ⅱ. 57 1098

    [18]

    Zhang Y C, Zhang L F 2009 Adv. Earth Sci. 24 1119 (in Chinese)[张永垂, 张立凤 2009 地球科学进展 24 1119]

    [19]

    Zhang Y C, Zhang L F, Luo Y 2010 J. Trop. Meteor. 16 51

    [20]

    Zhang Y C, Zhang L F, Lyu Q P Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese)[吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124]

    [21]

    Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese) [吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124]

    [22]

    Lyu Q P, Lu X, Zhu J, Dai W H, Zhang M 2015 J. Marin. Sci. 33 1 (in Chinese)[吕庆平, 卢姁, 朱娟, 戴文灝, 张铭 2015 海洋学研究 33 1]

    [23]

    Zhang D L, Lyu Q P, Zhang L F 2015 Chin. J. Atmos. Sci. 39 692 (in Chinese)[张东凌, 吕庆平, 张立凤 2015 大气科学 39 692]

    [24]

    Lyu Q P, Lu K C, Zhang M 2013 Climatic Environ. Res. 18 210 (in Chinese)[吕庆平, 路凯程, 张铭 2013 气候与环境研究 18 210]

    [25]

    Lu K C, Yu J, Lyu Q P, Zhang M 2014 Adv. Marin. Sci. 32 467 (in Chinese)[路凯程, 于杰, 吕庆平, 张铭 2014 海洋科学进展 32 467]

    [26]

    Ding Y H, Sun Y, Liu Y Y, Si D, Wang Z Y, Zhu Y X, Liu Y J, Song Y F, Zhang J 2013 Chin. J. Atmos. Sci. 37 253 (in Chinese)[丁一汇, 孙颖, 刘芸芸, 司东, 王遵娅, 朱玉祥, 柳艳菊, 宋亚芳, 张锦 2013 大气科学 37 253]

    [27]

    Qu W Z, Huang F, Zhao J P, Jia Y L, Li C, Yue S H 2008 Oceanol. Limnol. Sin. 39 552 (in Chinese)[曲维政, 黄菲, 赵进平, 加英莱, 李春, 岳淑红 2008 海洋与湖沼 39 552]

  • [1]

    Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C 1997 Bull. Amer. Meteor. Soc. 78 1069

    [2]

    Newman M, Alexander M A, Ault T R, et al. 2016 J. Climate 29 4399

    [3]

    Yang X Q, Zhu Y M, Xie Q, Ren X J, Xu G Y 2004 Chin. J. Atmos. Sci. 28 979 (in Chinese)[杨修群, 朱益民, 谢倩, 任雪娟, 徐桂玉 2004 大气科学 28 979]

    [4]

    Wu D X, Lin X P, Wan X Q, Lan J 2006 Acta Oceanol. Sin. 28 1 (in Chinese)[吴德星, 林霄沛, 万修全, 兰健 2006 海洋学报 28 1]

    [5]

    Sun D, Bryan F 2010 Climate Dynamics:Why does Climate Vary? (Washington DC:American Geophys Uninon Press) p123

    [6]

    Liu 2010 Deep-Sea Res. Ⅱ 57 1098

    [7]

    Wang S S, Guan Y P, Li Z J, Cao Y, Huang J P 2012 Acta Phys. Sin. 61 169201 (in Chinese)[王闪闪, 管玉平, Li Zhi-Jin, Cao Yi, 黄建平 2012 61 169201]

    [8]

    Liu Q Y, Li C, Hu R J 2010 Climatic Environ. Res. 15 217 (in Chinese)[刘秦玉, 李春, 胡瑞金 2010 气候与环境研究 15 217]

    [9]

    Lorenzo E D, Schneider N, Cobb K M, Franks P, Chhak K, Miller A, Mcwilliams J, Bograd S, Arango H, Curchitser E 2008 Geophys. Res. Lett. 35 L08607

    [10]

    Cummins P F, Lagerloef G S E, Mitchum G 2005 Geophys. Res. Lett. 32 L17607

    [11]

    Furtado J C, Lorenzo E D, Schneider N, Bond N A 2011 J. Climate 24 3049

    [12]

    Zhang W, Luo M 2016 Atmos. Sci. Lett. 17 437

    [13]

    Rafter P A, Sanchez S C, Ferguson J, Carriquiry J D, Druffel E R M 2017 Quaternary Sci. Rev. 160 108

    [14]

    Chhak K, Lorenzo E D 2009 J. Climate 22 1255

    [15]

    Ceballos L, Lorenzo E D, Hoyos C D 2009 J. Climate 22 5163

    [16]

    Cabanes C, Huck T, Verderee C D 2006 J. Phys. Oceanogr. 36 1739

    [17]

    Qiu B, Chen S M 2010 Deep-Sea Res. Ⅱ. 57 1098

    [18]

    Zhang Y C, Zhang L F 2009 Adv. Earth Sci. 24 1119 (in Chinese)[张永垂, 张立凤 2009 地球科学进展 24 1119]

    [19]

    Zhang Y C, Zhang L F, Luo Y 2010 J. Trop. Meteor. 16 51

    [20]

    Zhang Y C, Zhang L F, Lyu Q P Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese)[吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124]

    [21]

    Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese) [吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124]

    [22]

    Lyu Q P, Lu X, Zhu J, Dai W H, Zhang M 2015 J. Marin. Sci. 33 1 (in Chinese)[吕庆平, 卢姁, 朱娟, 戴文灝, 张铭 2015 海洋学研究 33 1]

    [23]

    Zhang D L, Lyu Q P, Zhang L F 2015 Chin. J. Atmos. Sci. 39 692 (in Chinese)[张东凌, 吕庆平, 张立凤 2015 大气科学 39 692]

    [24]

    Lyu Q P, Lu K C, Zhang M 2013 Climatic Environ. Res. 18 210 (in Chinese)[吕庆平, 路凯程, 张铭 2013 气候与环境研究 18 210]

    [25]

    Lu K C, Yu J, Lyu Q P, Zhang M 2014 Adv. Marin. Sci. 32 467 (in Chinese)[路凯程, 于杰, 吕庆平, 张铭 2014 海洋科学进展 32 467]

    [26]

    Ding Y H, Sun Y, Liu Y Y, Si D, Wang Z Y, Zhu Y X, Liu Y J, Song Y F, Zhang J 2013 Chin. J. Atmos. Sci. 37 253 (in Chinese)[丁一汇, 孙颖, 刘芸芸, 司东, 王遵娅, 朱玉祥, 柳艳菊, 宋亚芳, 张锦 2013 大气科学 37 253]

    [27]

    Qu W Z, Huang F, Zhao J P, Jia Y L, Li C, Yue S H 2008 Oceanol. Limnol. Sin. 39 552 (in Chinese)[曲维政, 黄菲, 赵进平, 加英莱, 李春, 岳淑红 2008 海洋与湖沼 39 552]

  • [1] Bi Sizhao,  Peng Zhaohui,  Xie Zhimin,  Wang Guangxu,  Zhang Lingshan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [2] Bi Si-Zhao, Peng Zhao-Hui, Wang Guang-Xu, Xie Zhi-Min, Zhang Ling-Shan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [3] Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang. Stick-slip transition of a water droplet vibrated on a superhydrophobic surface. Acta Physica Sinica, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [4] Hong Mei, Zhang Ren, Liu Ke-Feng. Retrieving dynamic forecast model of the western pacific subtropical high in abnormal years based on GA. Acta Physica Sinica, 2013, 62(7): 070505. doi: 10.7498/aps.62.070505
    [5] Hu Jing, Lin Shu-Yu, Wang Ceng-Hui, Li Jin. Study of resonance sound response for bubble cluster in ultrasonic field. Acta Physica Sinica, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [6] Ling Chao, Chen Ze-Yu, Chen Hong-Bin. Global structure and variation of mesospheric and lower thermospheric zonal wind in 120 °E meridian. Acta Physica Sinica, 2012, 61(24): 249201. doi: 10.7498/aps.61.0249201
    [7] Li Xiang-Zheng. Bounded damped oscillatory solutions of Fisher equation. Acta Physica Sinica, 2012, 61(17): 170507. doi: 10.7498/aps.61.170507
    [8] Wang Shan-Shan, Guan Yu-Ping, Li Zhi-Jin, Chao Yi, Huang Jian-Ping. Preliminary analyses on characteristics of sea surface temperatures in Kuroshio and its extension and relations to atmospheric circulations. Acta Physica Sinica, 2012, 61(16): 169201. doi: 10.7498/aps.61.169201
    [9] Ding Pei, Zhou Qiang, Hu Wei-Qin, Cai Gen-Wang, Liang Er-Jun. Selectable electromagnetic response modes and negative refraction in rectangular dielectric metamaterials. Acta Physica Sinica, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [10] Luo Shi-Yu, Li Hong-Tao, Wu Mu-Ying, Wang Shan-Jin, Ling Dong-Xiong, Zhang Wei-Feng, Shao Ming-Zhu. The resonance behaviour and dynamic stabilities of strained superlattice. Acta Physica Sinica, 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766
    [11] Mu Zong-Xin, Mu Xiao-Dong, Jia Li, Wang Chun, Dong Chuang. Electrostatic oscillation and coupling resonance in double trap of unbalanced magnetron sputtering. Acta Physica Sinica, 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164
    [12] Zhang Guo-Feng, Bu Jing-Jing. Entanglement evolution between atoms in the non-degenerate two photons Tavis-Cummings model in resonance and non-resonance cases. Acta Physica Sinica, 2010, 59(3): 1462-1467. doi: 10.7498/aps.59.1462
    [13] Yang Kun-De, Ma Yuan-Liang, Shi Yang. Spatio-temporal distributions of evaporation duct for the West Pacific Ocean. Acta Physica Sinica, 2009, 58(10): 7339-7350. doi: 10.7498/aps.58.7339
    [14] Mo Jia-Qi, Lin Wan-Tao, Lin Yi-Hua. Approximate solving method for a generalized perturbed mechanism of western boundary undercurrents in equator pacific. Acta Physica Sinica, 2007, 56(6): 3127-3131. doi: 10.7498/aps.56.3127
    [15] Mo Jia-Qi, Lin Wan-Tao. Homotopic mapping method of solution for the sea-air oscillator model of decadal variations in subtropical cells and equatorial pacific. Acta Physica Sinica, 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565
    [16] Mo Jia-Qi, Wang Hui, Lin Wan-Tao, Lin Yi-Hua. Sea-air oscillator model for equatorial eastern Pacific SST. Acta Physica Sinica, 2006, 55(1): 6-9. doi: 10.7498/aps.55.6
    [17] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcation of safe basins in softening Duffing oscillator under bounded noise excitation. Acta Physica Sinica, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
    [19] Zheng Dun-Sheng, Guo Xi-Kun. Dissociation of the HCN molecule in the highly excited vibrational states. Acta Physica Sinica, 2004, 53(10): 3347-3352. doi: 10.7498/aps.53.3347
    [20] Zheng Dun-Sheng, Wu Guo-Zhen. . Acta Physica Sinica, 2002, 51(10): 2229-2232. doi: 10.7498/aps.51.2229
Metrics
  • Abstract views:  6074
  • PDF Downloads:  95
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2017
  • Accepted Date:  11 December 2017
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map