Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm

Li Ning Lü Xiao-Jing Jing Weng

Citation:

Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm

Li Ning, Lü Xiao-Jing, Jing Weng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel approach to using tunable diode laser absorption spectroscopy (TDLAS) is developed for measuring the laser intensity and absorbance of gas with highly broadened and congested spectra by wavelength division multiplex (WDM) technology. Direct absorption spectroscopy with non-linear algorithm is utilized, because this fitting method offers benefits in dealing with blended spectral features according to the relationship between transmitted laser intensity and absorbance by Beer law. Compared with traditional TDLAS sensing with WDM, this approach has some advantages of transmissions demultiplexing without additional optic gratings and detectors. Following the published theory, the absorbance and transmitted laser intensity are incorporated into an improved non-linear fitting model. A solution to a simulation of CO2 blended spectrum at a pressure of 5 atm is exploited to demonstrate the ability to recover the absorption in a high pressure environment, inferring the optimal combination of parameters in the model. The influences of these nonideal laser effects, such as nonlinear and linear coefficients, are investigated by the multiplexed transmission simulations at rovibrational transitions of H2O near 7444 cm-1 and 7185 cm-1. Errors in absorbance fitting is larger when nonlinear or linear coefficients of two lasersbecome closer. The satisfied results can be obtained when linear coefficients ratio is limited whitin a range from 0.05 to 0.67. In addition, the essential transition spacing in multiplexed transmissions, larger than the full width of transitions, is considered to be able to improve the fitting accuracy. This approach is validated in a static absorption cell over a pressure range from 1 to 10 atm at room temperature to demonstrate the ability to measure the blended CO2 spectrum from 63307 cm-1 to 6337 cm-1 by a single DFB laser. The sensor method resolves laser intensity with a nonlinear coefficient of 1.4×10-4 and recovers absorbance with a root mean square (RMS) precision of 3.2%, which demonstrates the applicability of this sensor to high-pressure gas sensing systems. Another approach to validating the gas temperature and measuring H2O by WDM is presented in a gas-liquid two phase pulsed detonation engine running with a filling fraction of 100%. Two fiber coupled lasers, respectively, near 7185.6 cm-1 and 7444.35 cm-1 are scanned at 20 kHz to achieve a temporal resolution of 50 μs for monitoring detonation exhaust. A fixed spectrum interval (about 0.7 cm-1) of transitions in multiplexed transmission is created through temperature adjustment in DFB laser to provide more independent absorption information. Recovered linear coefficients of 0.18 and 0.46 in two DFB lasers are in good agreement with the results from the simulations. An instantaneous temperature measurement of 1183 K in the exhaust 7.45 ms after detonation wave provides the confirmation of the ability of this method to infer the temperature and H2O time histories in the whole detonation process. In conclusion, the novel approach based on TDLAS has tremendous potential applications in high pressure combustion diagnosis and WDM spectrum analysis.
      Corresponding author: Li Ning, phoenixkyo@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372141, 11472138).
    [1]

    Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]

    [2]

    Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]

    [3]

    L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]

    [4]

    Hanson R K 2011 P. Combust. Inst. 33 1

    [5]

    Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

    [6]

    Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568

    [7]

    Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942

    [8]

    Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865

    [9]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052

    [10]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [12]

    Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949

    [13]

    Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51

    [14]

    Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195

    [15]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [16]

    Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]

    [17]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474

    [18]

    Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 59 6914]

    [19]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [20]

    Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043

    [21]

    Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224

    [22]

    Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592

    [23]

    Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713

    [24]

    Watson G A 2007 J. Comput. Appl. Math. 208 331

    [25]

    Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

  • [1]

    Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]

    [2]

    Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]

    [3]

    L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]

    [4]

    Hanson R K 2011 P. Combust. Inst. 33 1

    [5]

    Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

    [6]

    Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568

    [7]

    Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942

    [8]

    Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865

    [9]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052

    [10]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [12]

    Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949

    [13]

    Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51

    [14]

    Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195

    [15]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [16]

    Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]

    [17]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474

    [18]

    Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 59 6914]

    [19]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [20]

    Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043

    [21]

    Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224

    [22]

    Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592

    [23]

    Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713

    [24]

    Watson G A 2007 J. Comput. Appl. Math. 208 331

    [25]

    Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

  • [1] Ge Shan-Shan, Wang Teng-Wu, Ge Jing-Yi, Zhou Pei, Li Nian-Qiang. Evolution of extreme events in chaotic light-injected semiconductor lasers. Acta Physica Sinica, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] Pang Wei-Xu, Li Ning, Huang Xiao-Long, Kang Yang, Li Can, Fan Xu-Dong, Weng Chun-Sheng. Optimization of beam arrangement for tunable diode laser absorption tomography reconstruction based on fractional Tikhonov regularization. Acta Physica Sinica, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [3] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [4] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [6] Li Ning, Tu Xin, Huang Xiao-Long, Weng Chun-Sheng. Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix. Acta Physica Sinica, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [7] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] Liu Ying-Ying, Pan Wei, Jiang Ning, Xiang Shui-Ying, Lin Yu-Dong. Isochronal chaos synchronization of a chain mutually coupled semiconductor lasers. Acta Physica Sinica, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [9] Huang Yi-Ze, Li Yi, Wang Hai-Fang, Yu Xiao-Jing, Zhang Hu, Zhang Wei, Zhu Hui-Qun, Sun Ruo-Xi, Zhou Sheng, Zhang Yu-Ming. Coherence collapse of the dual fiber Bragg grating external cavity semiconductor laser. Acta Physica Sinica, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [10] Zhang Jian-Zhong, Wang An-Bang, Zhang Ming-Jiang, Li Xiao-Chun, Wang Yun-Cai. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase. Acta Physica Sinica, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [11] Cao liang-Ping, Xia Guang-Qiong, Deng Tao, Lin Xiao-Dong, Wu Zheng-Mao. Bidirectional chaos communication based on semiconductor laser with incoherent optical feedback. Acta Physica Sinica, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [12] Zhang Ji-Bing, Zhang Jian-Zhong, Yang Yi-Biao, Liang Jun-Sheng, Wang Yun-Cai. Randomness analysis of external cavity semiconductor laser as entropy source. Acta Physica Sinica, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [13] Li Ning, Weng Chun-Sheng. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy. Acta Physica Sinica, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [14] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] Niu Sheng-Xiao, Wang Yun-Cai, He Hu-Cheng, Zhang Ming-Jiang. Tunable photonic microwave generation using optically injected semiconductor laser. Acta Physica Sinica, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [16] Liu Si-Ping, Zhang Yu-Chi, Zhang Peng-Fei, Li-Gang, Wang Jun-Min, Zhang Tian-Cai. Experimental study on the properties of the AR-coated external cavity diode lasers. Acta Physica Sinica, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [17] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [18] Yu Hai-Ying, Cui Bi-Feng, Chen Yi-Xin, Zou De-Shu, Liu Ying, Shen Gunag-Di. A novel high-power semiconductor laser diode with large cavity for high efficiency coupling with the optical fibers. Acta Physica Sinica, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [19] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [20] Wang Yun-Cai. Experimental study on the timing jitter of gain-switched laser diodes with photo n injection. Acta Physica Sinica, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
Metrics
  • Abstract views:  6987
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2017
  • Accepted Date:  12 December 2017
  • Published Online:  05 March 2018

/

返回文章
返回
Baidu
map