-
根据双光纤Bragg光栅(FBG)外腔半导体激光器相干失效的物理过程, 运用速率方程和双FBG耦合模理论, 分析了双FBG外腔半导体激光器相干失效产生和控制的条件, 提出了实现和控制双FBG外腔半导体激光器相干失效多模稳定工作的方法. 双FBG外腔半导体激光器在相干失效下具有多模的稳定工作状态, 相干失效长度缩短, 相干失效长度内光谱稳定. 实验测量结果表明, 外腔反射率为3%时, 从非相干失效状态到相干失效状态, 半峰值全宽度从0.5 nm突然展宽到0.9 nm. 在相干失效状态下, 功率稳定, 边模抑制比大于45 dB, 在0℃70℃工作温度范围内峰值波长漂移小于0.5 nm, 最小相干失效长度小于0.5 m. 双FBG外腔半导体激光器相干失效的应用对提高光纤放大器和光纤激光器的性能具有重要意义.
-
关键词:
- 非线性 /
- 半导体激光器 /
- 双光纤Bragg光栅 /
- 相干失效
The preconditions and controlling factors of coherence collapse (CC) are analyzed by the rate equations and dual fiber Bragg grating (FBG) couple mode theory based on the physical process of dual FBG external cavity semiconductor lasers. A method of achieving and controlling CC multi-mode stable state is put forward for dual FBG external cavity semiconductor lasers. When the dual FBG external cavity semiconductor laser operates at the multi-mode stable state under the CC regime, the CC length reduces. The spectrum of the laser is relatively stable within the CC length. The experimental results show the output power of the laser is stable while the laser with the 3% external reflectivity is operating under the CC regime. The side mode suppression ratio is more than 45 dB. The full wave at half maximum broadens from 0.5 nm to 0.9 nm dramatically as soon as the laser operates from the incoherence collapse regime to the CC regime. The wavelength shift is less than 0.5 nm at the operating temperature of 0 ℃70 ℃. The minimum of the CC length is less than 0.5 m. The CC application of dual FBG external cavity semiconductor lasers is vital to improve the performance of optical fiber amplifiers and fiber lasers.-
Keywords:
- nonlinear /
- semiconductor laser /
- dual fiber Bragg grating /
- coherence collapse
[1] Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512
[2] Ermakov I V, Tronciu V Z, Colet P, Mirasso C R 2009 Opt. Express 17 8749
[3] Yan S L 2008 Acta Phys. Sin. 57 2827 (in Chinese) [颜森林 2008 57 2827]
[4] Ding L, Wu J G, Xia G Q, Shen J T, Li N Y, Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese) [丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂 2011 60 014210]
[5] Arecchi F T, Meucci R 2009 Eur. Phys. J. B 69 93
[6] Kovachev L M 2007 Opt. Express 15 10318
[7] Metcalfe M, Muller A, Solomon G S, Lawall J 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 2308
[8] Zhai D Q, Liu C X, Liu Y, Xu Z 2010 Acta Phys. Sin. 59 816 (in Chinese) [翟笃庆, 刘崇新, 刘尧, 许喆 2010 59 816]
[9] Guan B L, Guo X, Zhang J L, Ren X J, Guo S, Li S, Chuai D X, Shen G D 2011 Acta Phys. Sin. 60 014209 (in Chinese) [关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地 2011 60 014209]
[10] Nili-Ahmadabadi H, Khorsandi A R 2011 Chin. Phys. B 20 054205
[11] Hou D X, Liu B, Shi P M 2009 Acta Phys. Sin. 58 5942 (in Chinese) [侯东晓, 刘彬, 时培明 2009 58 5942]
[12] Laidig W D, Caldwell P J, Lin Y F, Peng C K 1984 Appl. Phys. Lett. 44 653
[13] Wang L R, Liu X M, Gong Y K, Hu X H,Wang Y S, Lu K Q 2009 Acta Phys. Sin. 58 4464 (in Chinese) [王擂然, 刘雪明, 宫永康, 胡晓鸿, 王屹山, 卢克清 2009 58 4464]
[14] Adams A R 1986 Electron. Lett. 22 249
[15] Wen J H, Liu J, Zhang H, Chen J L, Huang Z Z, Jiao Z X, Lai T S 2010 Acta Phys. Sin. 59 370 (in Chinese) [文锦辉, 刘俊, 张慧, 陈佳龙, 黄梓柱, 焦中兴, 赖天树 2010 59 370]
[16] Beernink K J, York P K, Coleman J J 1989 Appl. Phys. Lett. 55 2585
[17] Liu S B, Sun J, Xu Z Q, Liu J S 2009 Chin. Phys. B 18 5219
[18] Zhang X D, Liu X, Zhao P D 2009 Acta Phys. Sin. 58 4415 (in Chinese) [张晓丹, 刘翔, 赵品栋 2009 58 4415]
[19] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 58 3793]
[20] Lee C L, Han P 2009 Opt. Rev. 16 526
[21] Barmenkov Y O, Zalvidea D, Salvador T P, Cruz J L, Andrés M V 2006 Opt. Express 14 6394
[22] Jin G X, Zhang L Y, Cao L 2009 Chin. Phys. B 18 952
[23] Noriega J M, Valle A, Pesquera L 2008 Opt. Quant. Electron. 40 119
[24] Arteaga M A, Lopez-Amo M, Hernandez J, Koltys K, Tabaka A, Thienpont H, Panajotov K 2008 Opt. Quant. Electron. 40 69
[25] Lin H H, Wang J J, Dang Z, Zhang R, Deng Y, Xu D P, Chen J, Wang C, Chen D H 2010 Acta Phys. Sin. 59 1130 (in Chinese) [林宏奂, 王建军, 党钊, 张锐, 邓颖, 许党朋, 陈骥, 王超, 陈德怀 2010 59 1130]
[26] Davis M K, Ghislotti G, Balsamo S, Loeber D A S, Smith G M, Hu M H, Hong K N 2005 IEEE J. Sel. Top. Quantum Electron. 11 1197
[27] Wang J C, Cassidy D T 2004 IEEE J. Quantum Electron. 40 673
[28] Murakami A, Ohtsubo J, Liu Y 1997 IEEE J. Quantum Electron. 33 1825
[29] Tartwijk G H M, Agrawal G P 1998 Prog. Quantum Electron. 22 43
[30] Hu S S, Li Y, Jiang Q J, Wu B 2008 Chin. J. Lasers 35 44 (in Chinese) [胡双双, 李毅, 蒋群杰, 武斌 2008 中国激光 35 44]
[31] Huang Y Z, Li Y, Wang H F, Yu X J, Zhang H, Zhang W, Zhu H Q, Zhou S, Sun L X, Zhang Y M 2011 Chin. Opt. Lett. 9 031403
-
[1] Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512
[2] Ermakov I V, Tronciu V Z, Colet P, Mirasso C R 2009 Opt. Express 17 8749
[3] Yan S L 2008 Acta Phys. Sin. 57 2827 (in Chinese) [颜森林 2008 57 2827]
[4] Ding L, Wu J G, Xia G Q, Shen J T, Li N Y, Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese) [丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂 2011 60 014210]
[5] Arecchi F T, Meucci R 2009 Eur. Phys. J. B 69 93
[6] Kovachev L M 2007 Opt. Express 15 10318
[7] Metcalfe M, Muller A, Solomon G S, Lawall J 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 2308
[8] Zhai D Q, Liu C X, Liu Y, Xu Z 2010 Acta Phys. Sin. 59 816 (in Chinese) [翟笃庆, 刘崇新, 刘尧, 许喆 2010 59 816]
[9] Guan B L, Guo X, Zhang J L, Ren X J, Guo S, Li S, Chuai D X, Shen G D 2011 Acta Phys. Sin. 60 014209 (in Chinese) [关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地 2011 60 014209]
[10] Nili-Ahmadabadi H, Khorsandi A R 2011 Chin. Phys. B 20 054205
[11] Hou D X, Liu B, Shi P M 2009 Acta Phys. Sin. 58 5942 (in Chinese) [侯东晓, 刘彬, 时培明 2009 58 5942]
[12] Laidig W D, Caldwell P J, Lin Y F, Peng C K 1984 Appl. Phys. Lett. 44 653
[13] Wang L R, Liu X M, Gong Y K, Hu X H,Wang Y S, Lu K Q 2009 Acta Phys. Sin. 58 4464 (in Chinese) [王擂然, 刘雪明, 宫永康, 胡晓鸿, 王屹山, 卢克清 2009 58 4464]
[14] Adams A R 1986 Electron. Lett. 22 249
[15] Wen J H, Liu J, Zhang H, Chen J L, Huang Z Z, Jiao Z X, Lai T S 2010 Acta Phys. Sin. 59 370 (in Chinese) [文锦辉, 刘俊, 张慧, 陈佳龙, 黄梓柱, 焦中兴, 赖天树 2010 59 370]
[16] Beernink K J, York P K, Coleman J J 1989 Appl. Phys. Lett. 55 2585
[17] Liu S B, Sun J, Xu Z Q, Liu J S 2009 Chin. Phys. B 18 5219
[18] Zhang X D, Liu X, Zhao P D 2009 Acta Phys. Sin. 58 4415 (in Chinese) [张晓丹, 刘翔, 赵品栋 2009 58 4415]
[19] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 58 3793]
[20] Lee C L, Han P 2009 Opt. Rev. 16 526
[21] Barmenkov Y O, Zalvidea D, Salvador T P, Cruz J L, Andrés M V 2006 Opt. Express 14 6394
[22] Jin G X, Zhang L Y, Cao L 2009 Chin. Phys. B 18 952
[23] Noriega J M, Valle A, Pesquera L 2008 Opt. Quant. Electron. 40 119
[24] Arteaga M A, Lopez-Amo M, Hernandez J, Koltys K, Tabaka A, Thienpont H, Panajotov K 2008 Opt. Quant. Electron. 40 69
[25] Lin H H, Wang J J, Dang Z, Zhang R, Deng Y, Xu D P, Chen J, Wang C, Chen D H 2010 Acta Phys. Sin. 59 1130 (in Chinese) [林宏奂, 王建军, 党钊, 张锐, 邓颖, 许党朋, 陈骥, 王超, 陈德怀 2010 59 1130]
[26] Davis M K, Ghislotti G, Balsamo S, Loeber D A S, Smith G M, Hu M H, Hong K N 2005 IEEE J. Sel. Top. Quantum Electron. 11 1197
[27] Wang J C, Cassidy D T 2004 IEEE J. Quantum Electron. 40 673
[28] Murakami A, Ohtsubo J, Liu Y 1997 IEEE J. Quantum Electron. 33 1825
[29] Tartwijk G H M, Agrawal G P 1998 Prog. Quantum Electron. 22 43
[30] Hu S S, Li Y, Jiang Q J, Wu B 2008 Chin. J. Lasers 35 44 (in Chinese) [胡双双, 李毅, 蒋群杰, 武斌 2008 中国激光 35 44]
[31] Huang Y Z, Li Y, Wang H F, Yu X J, Zhang H, Zhang W, Zhu H Q, Zhou S, Sun L X, Zhang Y M 2011 Chin. Opt. Lett. 9 031403
计量
- 文章访问数: 7626
- PDF下载量: 687
- 被引次数: 0