Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Propagation characteristics of speckle field in plasma

Yang Chun-Lin

Citation:

Propagation characteristics of speckle field in plasma

Yang Chun-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The interaction between light and plasma is one of the key problems in an inertial confinement fusion system. Some instability processes will occur when the energy of laser is absorbed by plasma. Because reducing the coherence of laser can significantly restrain the instability of the plasma, in practice, a continuous phase plate (CPP) is often used to generate the speckle and thereby to restrain the nonlinear effect in plasma. To clarify the working mechanism of CPP, the propagation characteristics of speckle field are studied in this paper. Since there are two different kinds of media in the light path, the statistical optics theory and the matrix optics method are combined to analyze the propagation characteristics of the speckle field in plasma. The ABCD matrix of the plasma is deduced. And then intensity distribution properties of the speckle filed in the plasma are calculated. Meanwhile, the autocorrelation length of the speckle field is calculated and the mechanism of the nonlinear restraint is explained. The results show that the speckle field is a paseudorandom field. It will bring a random phase disturbance to the wavefront in the propagation direction. It is very different form the ordinary Gaussian beam, the speckle filed has a limited longitudinal autocorrelation length. Though the propagation rule of the speckle field in plasma is similar to that in air, when the laser transmits into plasma, the coherence of the laser speckle weakens rapidly. The autocorrelation length of the speckle field in the plasma is shorter than that in air. Therefore, many kinds of nonlinear effects can be restrained when the speckle transmits into plasma. Specially, the autocorrelation length of the speckle is much shorter in the high density plasma. So the result of suppressing the nonlinear effect is better in plasma with high density than that with low density. This characteristic is very helpful in restraining the different nonlinear effects in plasma.
      Corresponding author: Yang Chun-Lin, yangchunlin@hotmail.com
    [1]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [2]

    Leeper R J 2011 Plasma and Fusion Research 6 1104012

    [3]

    Kurilenkov Y K, Tarakanov V P, Kov S U G 2010 Plasma Phys. Rep. 36 1227

    [4]

    Chang T Q 1991 Laser-plasma Interaction and the Laser Fusion (Changsha:Hunan Science Press) p2 (in Chinese)[常铁强 1991 激光等离子体相互作用与激光聚变(长沙:湖南科学技术出版) 第2页]

    [5]

    Mei Q Y, Zhao X W, Li W H, Jiang X H, Xie P, Zheng Z J, Tang D Y 1994 High Power Laser and Particle Beams 54 186 (in Chinese)[梅启庸, 赵雪薇, 李文洪, 蒋小华, 谢平, 郑志坚, 唐道源 1994 强激光与粒子束 54 186]

    [6]

    Montgomery D S 2016 Phys. Plasmas 23 055601

    [7]

    Livesscu D, Wei T, Mark R P 2011 J. Phys. 318 082007

    [8]

    Dubinov A E, Petrik A G, Kurkin S A, Frolov N S, Koronovskii A A 2016 Phys. Plasmas 23 042105

    [9]

    Xiang J, Zheng C Y, Liu Z J 2010 Acta Phys. Sin. 59 8717 (in Chinese)[项江, 郑春阳, 刘占军 2010 59 8717]

    [10]

    Zhang L, Dong Q L, Zhang J, Wang S J, Sheng Z M, He M Q, Zhang J 2009 Acta Phys. Sin. 58 1833 (in Chinese)[张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰 2009 58 1833]

    [11]

    Hafizi B, Palastro J P, Gordon D F, Jones T G, Helle M H 2015 Opt. Lett. 40 1556

    [12]

    Zhou Y L, Sui Z, D I Y C, Xu L X, Ming H 2014 Chin. Opt. Lett. 12 92

    [13]

    Rawat P, Gauniyal R, Purohit G 2014 Phys. Plasmas 21 011101

    [14]

    Brunel F 1988 Phys. Fluids 31 2714

    [15]

    Estabrook K G, Valeo E J, Kruer W L 1975 Phys. Fluids 18 1151

    [16]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Applications (Beijing:Science Press) p1 (in Chinese)[约瑟夫古德曼 著(曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第1页]

    [17]

    L B D 1991 Laser Optics (Chengdu:Sichuan University Press) p16 (in Chinese)[吕百达 1991 激光光学(成都:四川大学出版社) 第16页]

    [18]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Application (Beijing:Science Press) p71 (in Chinese)[约瑟夫古德曼 著 (曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第71页]

    [19]

    Tikhonchuk V T, Mounaix P, Pesme D 1997 Phys. Plasmas 4 2658

    [20]

    Glenzer S H, Arnold P, Bardsley G, Berger R L, Bonanno G, Borger T, Bower D E, Bowers M, Bryant R, Buckman S, Burkhart S C, Campbell K, Chrisp M P, Cohen B I, Constantin C 2004 Inertial Fusion Sciences and Applications 2003 207

  • [1]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [2]

    Leeper R J 2011 Plasma and Fusion Research 6 1104012

    [3]

    Kurilenkov Y K, Tarakanov V P, Kov S U G 2010 Plasma Phys. Rep. 36 1227

    [4]

    Chang T Q 1991 Laser-plasma Interaction and the Laser Fusion (Changsha:Hunan Science Press) p2 (in Chinese)[常铁强 1991 激光等离子体相互作用与激光聚变(长沙:湖南科学技术出版) 第2页]

    [5]

    Mei Q Y, Zhao X W, Li W H, Jiang X H, Xie P, Zheng Z J, Tang D Y 1994 High Power Laser and Particle Beams 54 186 (in Chinese)[梅启庸, 赵雪薇, 李文洪, 蒋小华, 谢平, 郑志坚, 唐道源 1994 强激光与粒子束 54 186]

    [6]

    Montgomery D S 2016 Phys. Plasmas 23 055601

    [7]

    Livesscu D, Wei T, Mark R P 2011 J. Phys. 318 082007

    [8]

    Dubinov A E, Petrik A G, Kurkin S A, Frolov N S, Koronovskii A A 2016 Phys. Plasmas 23 042105

    [9]

    Xiang J, Zheng C Y, Liu Z J 2010 Acta Phys. Sin. 59 8717 (in Chinese)[项江, 郑春阳, 刘占军 2010 59 8717]

    [10]

    Zhang L, Dong Q L, Zhang J, Wang S J, Sheng Z M, He M Q, Zhang J 2009 Acta Phys. Sin. 58 1833 (in Chinese)[张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰 2009 58 1833]

    [11]

    Hafizi B, Palastro J P, Gordon D F, Jones T G, Helle M H 2015 Opt. Lett. 40 1556

    [12]

    Zhou Y L, Sui Z, D I Y C, Xu L X, Ming H 2014 Chin. Opt. Lett. 12 92

    [13]

    Rawat P, Gauniyal R, Purohit G 2014 Phys. Plasmas 21 011101

    [14]

    Brunel F 1988 Phys. Fluids 31 2714

    [15]

    Estabrook K G, Valeo E J, Kruer W L 1975 Phys. Fluids 18 1151

    [16]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Applications (Beijing:Science Press) p1 (in Chinese)[约瑟夫古德曼 著(曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第1页]

    [17]

    L B D 1991 Laser Optics (Chengdu:Sichuan University Press) p16 (in Chinese)[吕百达 1991 激光光学(成都:四川大学出版社) 第16页]

    [18]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Application (Beijing:Science Press) p71 (in Chinese)[约瑟夫古德曼 著 (曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第71页]

    [19]

    Tikhonchuk V T, Mounaix P, Pesme D 1997 Phys. Plasmas 4 2658

    [20]

    Glenzer S H, Arnold P, Bardsley G, Berger R L, Bonanno G, Borger T, Bower D E, Bowers M, Bryant R, Buckman S, Burkhart S C, Campbell K, Chrisp M P, Cohen B I, Constantin C 2004 Inertial Fusion Sciences and Applications 2003 207

  • [1] Yang Chun-Lin. Random wavenumber and nonlinear parametric effect of speckle field. Acta Physica Sinica, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] Yin Jun, Wang Shao-Fei, Zhang Jun-Jie, Xie Jia-Chen, Chen Hong-Yu, Jia Yuan, Hu Xu-Jin, Yu Ling-Yao. Theoretical study of wide-field fluorescence microscopy based on dynamic speckle illumination. Acta Physica Sinica, 2021, 70(23): 238701. doi: 10.7498/aps.70.20211022
    [4] Song Hong-Sheng, Liu Gui-Yuan, Zhang Ning-Yu, Zhuang Qiao, Cheng Chuan-Fu. New features of the speckle phase singularity produced in large angle scattering. Acta Physica Sinica, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [5] Song Hong-Sheng, Zhuang Qiao, Liu Gui-Yuan, Qin Xi-Feng, Cheng Chuan-Fu. Statistical characteristics and variation of speckle intensity in deep fresnel diffraction region. Acta Physica Sinica, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [6] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [7] Chang Hong, Yang Fu-Gui, Dong Lei, Wang An-Ting, Xie Jian-Ping, Ming Hai. Effect of structure and size of laser spot on speckle contrast in laser scanning display. Acta Physica Sinica, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [8] Song Hong-Sheng, Cheng Chuan-Fu, Teng Shu-Yun, Liu Man, Liu Gui-Yuan, Zhang Ning-Yu. Experimental studies on the statistical functions of speckle fields based on the extraction of the complex amplitudes by use of interference beam. Acta Physica Sinica, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [9] Song Hong-Sheng, Cheng Chuan-Fu, Liu Man, Teng Shu-Yun, Zhang Ning-Yu. Experimental study on phase vortices of speckles and their propagation properties. Acta Physica Sinica, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [10] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [11] Zhao Guo-Wei, Wang Zhi-Jiang, Xu Yue-Min, Liang Zhi-Wei, Xu Jie. Numerical simulation of plasma nonlinear phenomena excited by radio-frequency wave using FDTD method. Acta Physica Sinica, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [12] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [13] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [14] Zhang Min, Wu Zhen-Sen. The moments analysis of the pulse propagation through plasma medium and its applications. Acta Physica Sinica, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [15] Splitting of ultrashort laser pulses propagating in plasmas and the generation of soliton-like structures. Acta Physica Sinica, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [17] Zhang Li, Li Xiang-Dong, Jiang Xin-Ge. Plasma effect on the Kα group emission of He-like neon. Acta Physica Sinica, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [18] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [19] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
Metrics
  • Abstract views:  6092
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2017
  • Accepted Date:  07 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map