搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行磁控的磁化等离子体光子晶体THz波调制器

周雯 季珂 陈鹤鸣

引用本文:
Citation:

基于平行磁控的磁化等离子体光子晶体THz波调制器

周雯, 季珂, 陈鹤鸣

Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal

Zhou Wen, Ji Ke, Chen He-Ming
PDF
导出引用
  • 随着现代移动流量的剧烈增长,未来无线THz通信传输速率需求将会达到数十Gb/s,高速THz波调制器的研究对于THz无线通信系统具有重要意义.本文提出了一种新型的磁化等离子体THz波调制器,在二维光子晶体中引入线缺陷和填充锑化铟材料的点缺陷.基于法拉第磁光效应,由于锑化铟材料的回旋角频率落在THz频段,在外加磁场的作用下点缺陷表面可在THz频段形成磁化等离子体.当外加磁场与TE波传输方向平行时,单频光在谐振腔中分裂成左旋和右旋圆偏振光,二者的谐振频率差异随着外加磁场强度的增加而增大.控制外加磁场的有无便可实现缺陷模迁移型THz波调制器.利用时域有限差分法和有限元法分析其时域稳态场强分布和模场分布,结果表明当外加磁场强度为0和0.8 T时,可实现THz的通、断调制,消光比高达25.4 dB,插入损耗仅为0.3 dB,调制速率高达4 GHz.该器件在未来THz无线宽带通信中有着巨大的潜力和应用.
    THz waves are very good candidates for high-capacity wireless links since they offer a much higher bandwidth than RF frequencies. Photonic crystal (PC) offers a new opportunity for integrated THz wave devices. It permits the integrated devices to be miniaturized to a scale comparable to the wavelength of the electromagnetic wave. Considering their governing properties such as photonic band gap (PBG) and photon localization effect to control electromagnetic wave propagations, PC-based THz modulator has attracted much attention. Tunability strategies include mechanical control, electrical control, magneto static control, temperature control and optical pumping. However, the development of high-speed THz wireless communication system is limited by the low modulation depth and rate of previously reported modulators. In this paper, we propose a novel magnetic-controlled THz modulator based on a magnetized plasma PC consisting of line defects and a point defect. InSb, a semiconductor with high electron mobility, is introduced into the point defect. According to the magneto-optical effect, the refractive index of InSb changes rapidly under the control of the applied magnetic field (MF) intensity. Then the mode frequency in the point defect changes dynamically. The structure is based on a two-dimensional PC constructed by triangular lattice of Si rods in air. Based on the magneto-optic effect, the magnetized plasma defect mode in the THz regime can be decomposed into the left- and right-handed circularly polarized light when the applied magnetic field is parallel to the direction of the THz wave. And the difference in effective refractive index between the left- and right-handed circularly polarized light increases with the applied uniform magnetic field increasing. Therefore the on/off modulation of left- and right-hand circularly polarized light can be realized. The steady-state field intensity distribution and the time domain steady state response of TE wave propagating parallelly to the external magnetic field are simulated by the finite-difference-time-domain and finite element method. The simulation results show that PC-based mode transfer modulator has the potential application to THz wireless broadband communication system with a good performance of high contrast ratio (25.4 dB), low insertion loss (0.3 dB) and high modulation rate (~4 GHz). It is convenient to load the modulation signals in an easy MF application way. The device designed is leading the way to extend the application of THz wireless communication filed with advantages of small size, low insertion loss, and high extinction ratio.
      通信作者: 陈鹤鸣, chhm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61077084,61571237)、江苏省自然科学基金(批准号:BK20151509)和江苏省研究生科研创新计划(批准号:KYLX15_0835)资助的课题.
      Corresponding author: Chen He-Ming, chhm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077084, 61571237), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151509), and the Colleges and Universities in Jiangsu Province Plans for Graduate Research and Innovation, China (Grant No. KYLX15_0835).
    [1]

    Walowski J, Mnzenberg M 2016J.Appl.Phys. 120 140901

    [2]

    Yao J Q, Chi N, Yang P F 2009Chin.J.Lasers 36 2213(in Chinese)[姚建铨, 迟楠, 杨鹏飞2009中国激光36 2213]

    [3]

    Cao J C, Lei X L, Hu Q, Zhang C, Zhang X C 2014Physics 43 500(in Chinese)[曹俊成, 雷啸霖, 胡青, 张潮, 张希成2014物理43 500]

    [4]

    Zhou W, Zhuang Y Y, Ji K, Chen H M 2015Opt.Express 23 24770

    [5]

    Ji K, Chen H M, Zhou W 2014J.Opt.Soc.Korea 18 589

    [6]

    Hasek T, Ghattan Z, Wilk R, Shahabadi M, Koch M 2008Proceedings of 33rd International Conference on Infrared, Millimeter and Terahertz Waves Pasadena, USA, September 15-19, 2008 p1

    [7]

    Chen H M, Su J, Wang J L, Zhao X Y 2011Opt.Express 19 3599

    [8]

    Guo Z, Fan F, Bai J J, Niu C, Chang S J 2011Acta Phys.Sin. 60 074218(in Chinese)[郭展, 范飞, 白晋军, 牛超, 常胜江2011 60 074218]

    [9]

    Liu C L, He X Y, Zhao Z Y, Zhang H, Shi W Z 2015Opt.Commun. 356 64

    [10]

    Hu B, Zhang Y, Wang Q J 2015J.Nanophotonics 4 1

    [11]

    Fan F, Guo Z, Bai J J, Wang X H, Chang S J 2011Acta Phys.Sin. 60 084219(in Chinese)[范飞, 郭展, 白晋军, 王湘晖, 常胜江2011 60 084219]

    [12]

    Rivas J G, Janke C, Bolivar P H, Kurz H 2005Opt.Express 13 847

    [13]

    Fan F, Chang S J, Gu W H, Wang X H, Chen A Q 2012IEEE Photon.Technol.Lett. 24 2080

    [14]

    Hu B, Wang Q J, Zhang Y 2012Opt.Express 20 10071

    [15]

    Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J 2010Nature Phys. 6 126

    [16]

    Gu W H, Chang S J, Fan F, Zhang N, Zhang X Z 2016Opt.Commun. 377 110

    [17]

    Han J G, Lakhtakia A, Tian Z, Lu X C, Zhang W L 2009Opt.Lett. 34 1465

    [18]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012Opt.Express 20 19484

    [19]

    Yuan L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010Acta Phys.Sin. 59 352(in Chinese)[元丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正2010 59 352]

    [20]

    Halevi P, Ramos-Mendieta F 2000Phys.Rev.Lett. 85 1875

    [21]

    Zudov M A, Mitchell A P, Chin A H, Kono J 2003J.Appl.Phys. 94 3271

  • [1]

    Walowski J, Mnzenberg M 2016J.Appl.Phys. 120 140901

    [2]

    Yao J Q, Chi N, Yang P F 2009Chin.J.Lasers 36 2213(in Chinese)[姚建铨, 迟楠, 杨鹏飞2009中国激光36 2213]

    [3]

    Cao J C, Lei X L, Hu Q, Zhang C, Zhang X C 2014Physics 43 500(in Chinese)[曹俊成, 雷啸霖, 胡青, 张潮, 张希成2014物理43 500]

    [4]

    Zhou W, Zhuang Y Y, Ji K, Chen H M 2015Opt.Express 23 24770

    [5]

    Ji K, Chen H M, Zhou W 2014J.Opt.Soc.Korea 18 589

    [6]

    Hasek T, Ghattan Z, Wilk R, Shahabadi M, Koch M 2008Proceedings of 33rd International Conference on Infrared, Millimeter and Terahertz Waves Pasadena, USA, September 15-19, 2008 p1

    [7]

    Chen H M, Su J, Wang J L, Zhao X Y 2011Opt.Express 19 3599

    [8]

    Guo Z, Fan F, Bai J J, Niu C, Chang S J 2011Acta Phys.Sin. 60 074218(in Chinese)[郭展, 范飞, 白晋军, 牛超, 常胜江2011 60 074218]

    [9]

    Liu C L, He X Y, Zhao Z Y, Zhang H, Shi W Z 2015Opt.Commun. 356 64

    [10]

    Hu B, Zhang Y, Wang Q J 2015J.Nanophotonics 4 1

    [11]

    Fan F, Guo Z, Bai J J, Wang X H, Chang S J 2011Acta Phys.Sin. 60 084219(in Chinese)[范飞, 郭展, 白晋军, 王湘晖, 常胜江2011 60 084219]

    [12]

    Rivas J G, Janke C, Bolivar P H, Kurz H 2005Opt.Express 13 847

    [13]

    Fan F, Chang S J, Gu W H, Wang X H, Chen A Q 2012IEEE Photon.Technol.Lett. 24 2080

    [14]

    Hu B, Wang Q J, Zhang Y 2012Opt.Express 20 10071

    [15]

    Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J 2010Nature Phys. 6 126

    [16]

    Gu W H, Chang S J, Fan F, Zhang N, Zhang X Z 2016Opt.Commun. 377 110

    [17]

    Han J G, Lakhtakia A, Tian Z, Lu X C, Zhang W L 2009Opt.Lett. 34 1465

    [18]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012Opt.Express 20 19484

    [19]

    Yuan L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010Acta Phys.Sin. 59 352(in Chinese)[元丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正2010 59 352]

    [20]

    Halevi P, Ramos-Mendieta F 2000Phys.Rev.Lett. 85 1875

    [21]

    Zudov M A, Mitchell A P, Chin A H, Kono J 2003J.Appl.Phys. 94 3271

  • [1] 周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅. 一种基于束缚态的可调等离子体光子晶体窄带滤波器.  , 2021, 70(17): 175201. doi: 10.7498/aps.70.20210241
    [2] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究.  , 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [3] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究.  , 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [4] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [5] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器.  , 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [6] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性.  , 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [7] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析.  , 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [8] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究.  , 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [9] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究.  , 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [10] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [11] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响.  , 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [12] 陈宪锋, 蒋美萍, 沈小明, 金 铱, 黄正逸. 一维多缺陷光子晶体的缺陷模.  , 2008, 57(9): 5709-5712. doi: 10.7498/aps.57.5709
    [13] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究.  , 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [14] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法.  , 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [15] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析.  , 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [16] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [17] 周金苟, 杜桂强, 张亚文, 刘念华. 双周期厚度调制的一维光子晶体的电磁模.  , 2005, 54(8): 3703-3706. doi: 10.7498/aps.54.3703
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模.  , 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法.  , 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [20] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析.  , 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
计量
  • 文章访问数:  7131
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-05
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map