Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal

Zhou Wen Ji Ke Chen He-Ming

Citation:

Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal

Zhou Wen, Ji Ke, Chen He-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • THz waves are very good candidates for high-capacity wireless links since they offer a much higher bandwidth than RF frequencies. Photonic crystal (PC) offers a new opportunity for integrated THz wave devices. It permits the integrated devices to be miniaturized to a scale comparable to the wavelength of the electromagnetic wave. Considering their governing properties such as photonic band gap (PBG) and photon localization effect to control electromagnetic wave propagations, PC-based THz modulator has attracted much attention. Tunability strategies include mechanical control, electrical control, magneto static control, temperature control and optical pumping. However, the development of high-speed THz wireless communication system is limited by the low modulation depth and rate of previously reported modulators. In this paper, we propose a novel magnetic-controlled THz modulator based on a magnetized plasma PC consisting of line defects and a point defect. InSb, a semiconductor with high electron mobility, is introduced into the point defect. According to the magneto-optical effect, the refractive index of InSb changes rapidly under the control of the applied magnetic field (MF) intensity. Then the mode frequency in the point defect changes dynamically. The structure is based on a two-dimensional PC constructed by triangular lattice of Si rods in air. Based on the magneto-optic effect, the magnetized plasma defect mode in the THz regime can be decomposed into the left- and right-handed circularly polarized light when the applied magnetic field is parallel to the direction of the THz wave. And the difference in effective refractive index between the left- and right-handed circularly polarized light increases with the applied uniform magnetic field increasing. Therefore the on/off modulation of left- and right-hand circularly polarized light can be realized. The steady-state field intensity distribution and the time domain steady state response of TE wave propagating parallelly to the external magnetic field are simulated by the finite-difference-time-domain and finite element method. The simulation results show that PC-based mode transfer modulator has the potential application to THz wireless broadband communication system with a good performance of high contrast ratio (25.4 dB), low insertion loss (0.3 dB) and high modulation rate (~4 GHz). It is convenient to load the modulation signals in an easy MF application way. The device designed is leading the way to extend the application of THz wireless communication filed with advantages of small size, low insertion loss, and high extinction ratio.
      Corresponding author: Chen He-Ming, chhm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077084, 61571237), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151509), and the Colleges and Universities in Jiangsu Province Plans for Graduate Research and Innovation, China (Grant No. KYLX15_0835).
    [1]

    Walowski J, Mnzenberg M 2016J.Appl.Phys. 120 140901

    [2]

    Yao J Q, Chi N, Yang P F 2009Chin.J.Lasers 36 2213(in Chinese)[姚建铨, 迟楠, 杨鹏飞2009中国激光36 2213]

    [3]

    Cao J C, Lei X L, Hu Q, Zhang C, Zhang X C 2014Physics 43 500(in Chinese)[曹俊成, 雷啸霖, 胡青, 张潮, 张希成2014物理43 500]

    [4]

    Zhou W, Zhuang Y Y, Ji K, Chen H M 2015Opt.Express 23 24770

    [5]

    Ji K, Chen H M, Zhou W 2014J.Opt.Soc.Korea 18 589

    [6]

    Hasek T, Ghattan Z, Wilk R, Shahabadi M, Koch M 2008Proceedings of 33rd International Conference on Infrared, Millimeter and Terahertz Waves Pasadena, USA, September 15-19, 2008 p1

    [7]

    Chen H M, Su J, Wang J L, Zhao X Y 2011Opt.Express 19 3599

    [8]

    Guo Z, Fan F, Bai J J, Niu C, Chang S J 2011Acta Phys.Sin. 60 074218(in Chinese)[郭展, 范飞, 白晋军, 牛超, 常胜江2011 60 074218]

    [9]

    Liu C L, He X Y, Zhao Z Y, Zhang H, Shi W Z 2015Opt.Commun. 356 64

    [10]

    Hu B, Zhang Y, Wang Q J 2015J.Nanophotonics 4 1

    [11]

    Fan F, Guo Z, Bai J J, Wang X H, Chang S J 2011Acta Phys.Sin. 60 084219(in Chinese)[范飞, 郭展, 白晋军, 王湘晖, 常胜江2011 60 084219]

    [12]

    Rivas J G, Janke C, Bolivar P H, Kurz H 2005Opt.Express 13 847

    [13]

    Fan F, Chang S J, Gu W H, Wang X H, Chen A Q 2012IEEE Photon.Technol.Lett. 24 2080

    [14]

    Hu B, Wang Q J, Zhang Y 2012Opt.Express 20 10071

    [15]

    Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J 2010Nature Phys. 6 126

    [16]

    Gu W H, Chang S J, Fan F, Zhang N, Zhang X Z 2016Opt.Commun. 377 110

    [17]

    Han J G, Lakhtakia A, Tian Z, Lu X C, Zhang W L 2009Opt.Lett. 34 1465

    [18]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012Opt.Express 20 19484

    [19]

    Yuan L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010Acta Phys.Sin. 59 352(in Chinese)[元丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正2010 59 352]

    [20]

    Halevi P, Ramos-Mendieta F 2000Phys.Rev.Lett. 85 1875

    [21]

    Zudov M A, Mitchell A P, Chin A H, Kono J 2003J.Appl.Phys. 94 3271

  • [1]

    Walowski J, Mnzenberg M 2016J.Appl.Phys. 120 140901

    [2]

    Yao J Q, Chi N, Yang P F 2009Chin.J.Lasers 36 2213(in Chinese)[姚建铨, 迟楠, 杨鹏飞2009中国激光36 2213]

    [3]

    Cao J C, Lei X L, Hu Q, Zhang C, Zhang X C 2014Physics 43 500(in Chinese)[曹俊成, 雷啸霖, 胡青, 张潮, 张希成2014物理43 500]

    [4]

    Zhou W, Zhuang Y Y, Ji K, Chen H M 2015Opt.Express 23 24770

    [5]

    Ji K, Chen H M, Zhou W 2014J.Opt.Soc.Korea 18 589

    [6]

    Hasek T, Ghattan Z, Wilk R, Shahabadi M, Koch M 2008Proceedings of 33rd International Conference on Infrared, Millimeter and Terahertz Waves Pasadena, USA, September 15-19, 2008 p1

    [7]

    Chen H M, Su J, Wang J L, Zhao X Y 2011Opt.Express 19 3599

    [8]

    Guo Z, Fan F, Bai J J, Niu C, Chang S J 2011Acta Phys.Sin. 60 074218(in Chinese)[郭展, 范飞, 白晋军, 牛超, 常胜江2011 60 074218]

    [9]

    Liu C L, He X Y, Zhao Z Y, Zhang H, Shi W Z 2015Opt.Commun. 356 64

    [10]

    Hu B, Zhang Y, Wang Q J 2015J.Nanophotonics 4 1

    [11]

    Fan F, Guo Z, Bai J J, Wang X H, Chang S J 2011Acta Phys.Sin. 60 084219(in Chinese)[范飞, 郭展, 白晋军, 王湘晖, 常胜江2011 60 084219]

    [12]

    Rivas J G, Janke C, Bolivar P H, Kurz H 2005Opt.Express 13 847

    [13]

    Fan F, Chang S J, Gu W H, Wang X H, Chen A Q 2012IEEE Photon.Technol.Lett. 24 2080

    [14]

    Hu B, Wang Q J, Zhang Y 2012Opt.Express 20 10071

    [15]

    Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J 2010Nature Phys. 6 126

    [16]

    Gu W H, Chang S J, Fan F, Zhang N, Zhang X Z 2016Opt.Commun. 377 110

    [17]

    Han J G, Lakhtakia A, Tian Z, Lu X C, Zhang W L 2009Opt.Lett. 34 1465

    [18]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012Opt.Express 20 19484

    [19]

    Yuan L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010Acta Phys.Sin. 59 352(in Chinese)[元丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正2010 59 352]

    [20]

    Halevi P, Ramos-Mendieta F 2000Phys.Rev.Lett. 85 1875

    [21]

    Zudov M A, Mitchell A P, Chin A H, Kono J 2003J.Appl.Phys. 94 3271

  • [1] Zhou Ming-Jie, Tan Hai-Yun, Zhou Yan, Zhuge Lan-Jian, Wu Xue-Mei. A tunable narrow-band plasma photonic crystal filter based on bound state. Acta Physica Sinica, 2021, 70(17): 175201. doi: 10.7498/aps.70.20210241
    [2] Bo Yong, Zhao Qing, Luo Xian-Gang, Fan Jia, Liu Ying, Liu Jian-Wei. Experimental study of the communication performance of electromagnetic wave in time-varying and magnetized plasma channel. Acta Physica Sinica, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [3] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [4] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [5] Wang Chang-Hui, Zhao Guo-Hua, Chang Sheng-Jiang. Photonic-crystal-waveguide based Mach-Zehnder interferometer for terahertz switch and modulator. Acta Physica Sinica, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [6] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Shi Du-Fang. Polarization properties of one-dimensional photonic crystal tunneling mode containing metamaterials. Acta Physica Sinica, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [7] Zhang Hai-Feng, Liu Shao-Bin, Kong Xiang. Analsys of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode. Acta Physica Sinica, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [8] Kong Xiang-Kun, Liu Shao-Bin, Zhang Hai-Feng. Defect mode properties of two-dimensional unmagnetized plasma photonic crystals with line-defect under transverse magnetic mode. Acta Physica Sinica, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [9] Zhang Hai-Feng, Ma Li, Liu Shao-Bin. Defect mode properties of magnetized plasma photonic crystals. Acta Physica Sinica, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [10] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [11] Lin Xu-Sheng, Wu Li-Jun, Guo Qi, Hu Wei, Lan Sheng. Impact of a stripe waveguide to coupled defect modes of photonic crystals. Acta Physica Sinica, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [12] Chen Xian-Feng, Jiang Mei-Ping, Shen Xiao-Ming, Jin Yi, Huang Zhen-Yi. The defect modes in one-dimensional photonic crystal with multiple defects. Acta Physica Sinica, 2008, 57(9): 5709-5712. doi: 10.7498/aps.57.5709
    [13] Ma Xiao-Tao, Zheng Wan-Hua, Ren Gang, Fan Zhong-Chao, Chen Liang-Hui. Inductively coupled plasma etching of two-dimensional InP/InGaAsP-based photonic crystal. Acta Physica Sinica, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [14] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [15] Liu Shao-Bin, Gu Chang-Qing, Zhou Jian-Jiang, Yuan Nai-Chang. FDTD simulation for magnetized plasma photonic crystals. Acta Physica Sinica, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [16] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [17] Zhou Jin-Gou, Du Gui-Qiang, Zhang Ya-Wen, Liu Nian-Hua. Electromagnetic modes of thickness-modulated dual-periodic one-dimensional photonic crystals. Acta Physica Sinica, 2005, 54(8): 3703-3706. doi: 10.7498/aps.54.3703
    [18] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [20] Tang De-Li, Sun Ai-Ping, Qui Xiao-Ming. . Acta Physica Sinica, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
Metrics
  • Abstract views:  7133
  • PDF Downloads:  247
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2016
  • Accepted Date:  06 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map