Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Early time effects produced by neutral gas ionospheric chemical release

Zhao Hai-Sheng Xu Zhao-Hui Gao Jing-Fan Xu Zheng-Wen Wu Jian Feng Jie Xu Bin Xue Kun Li Hui Ma Zheng-Zheng

Citation:

Early time effects produced by neutral gas ionospheric chemical release

Zhao Hai-Sheng, Xu Zhao-Hui, Gao Jing-Fan, Xu Zheng-Wen, Wu Jian, Feng Jie, Xu Bin, Xue Kun, Li Hui, Ma Zheng-Zheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The artificial release of electron adsorbing material can cause electron density to be depleted in the ionosphere, forming the ionospheric holes rapidly. At the same time, the shell structure of the electron density enhancement around the hole is produced, owing to the extrusion of background plasma caused by rapid expansion of the release. The coexistence of ionospheric hole and enhancement structure is the significant characteristics of the early time effects. In this paper, the early time effects of neutral chemicals released into ionosphere are studied, and a physical model of spatiotemporal evolution about early time electron density is set up. At t=1 s, the maximum electron density in the enhanced region is 2.46106 cm-3, approximately 2.8 times as great as background electron density, then the electron density at the boundary gradually decreases. At t=30 s, the maximum electron density is 1.58106 cm-3, which is about 1.7 times the background electron density. At t=120 s the maximum electron density in the enhanced region is 1.12106 cm-3, which is 1.2 times the background electron density. Within 120 s after release, the size of the ionospheric cavity increases gradually; at t=5 s the distribution range of the released chemical material is of a sphere of about 10 km in diameter; at t=120 s the distribution diameter of the released chemical material is more than 70 km, and at the same time, the depletion depth of the ionospheric hole decreases slowly. At t=1 s, the depletion depth of the ionospheric hole is about 100%, and at t=120 s the depletion depth of the ionospheric cavity decreases to 95%. The effects of different-frequency radio waves propagating through ionospheric disturbance at t=10 s and t=120 s are simulated by the ray tracing. At t=10 s, the effect of electron density enhancement is remarkable, and the thickness of the enhancement is about 10 km, and the electronic density enhancement area can reflect the radio wave signal at a frequency as high as 14 MHz. At t=120 s, the phenomenon of electron density enhancement becomes weak, the thickness of the enhanced area continues to increase, and the radio wave signal that the electronic density enhancement area could reflect decreases to 11 MHz. The radio waves at a frequency range between 9 MHz and 12 MHz each have a complex diffraction, focusing and dispersing effect in the disturbed area. Furthermore, according to the working principle of ionospheric vertical measurement instrument and ray tracing theory, the vertical ionization detection figures are obtained through inversion. The results are consistent with previous experimental results of rocket exhaust, which testifies the correctness of proposed model.
      Corresponding author: Xu Zhao-Hui, zhhxu_22@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672068, 61601419).
    [1]

    Booker H G 1961 J. Geophys. Res. 66 1073

    [2]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 187 343

    [3]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 J. Geophys. Res. 80 2217

    [4]

    Zinn J, Sutherland C D, Stone S N, Duncan L M, Behnke R 1982 J. Atmos. Terr. Phys. 44 1143

    [5]

    Mendillo M, Jeffrey M, Forbes J M 1978 J. Geophys. Res. 83 151

    [6]

    Mendillo M, Forbes J M 1982 J. Geophys. Res. 87 8273

    [7]

    Mendillo M, Smith S, Coster A, Erickson P, Baumgardner J, Martinis C 2008 SPACE WEATHER 6 S09001

    [8]

    Anderson D N, Bernhardt P A 1978 J. Geophys. Res. 83 4777

    [9]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 4341

    [10]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 793

    [11]

    Bernhardt P A 1982 J. Geophys. Res. 87 7539

    [12]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [13]

    Bernhardt P A, Weber E J, Moore J G, Baumgardner J, Mendillo M J 1986 Geophys. Res. Lett. 91 8937

    [14]

    Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401(in Chinese) [赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 65 209401]

    [15]

    Hunton D E 1993 Geophys. Res. Lett. 20 563

    [16]

    Koons H C, Rocdcr J L 1995 J. Geophys. Res. 100 5801

    [17]

    SchunkR W, Szuszczewicz E P 1988 J. Geophys. Res. 93 12901

    [18]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [19]

    Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412

    [20]

    Zalesak S T, Drake J F, Huba J D 1988 Radio Sci. 23 591

    [21]

    Zalesak S T, Drake J F, Huba J D 1990 Geophys. Res. Lett. 17 1597

    [22]

    Ma T Z, Shunk R W 1991 J. Geophys. Res. 96 5793

    [23]

    Ma T Z, Shunk R W 1993 J. Geophys. Res. 98 323

    [24]

    Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623

    [25]

    Shuman N S, Hunton D E, Viggiano A A 2015 J. Chem. Rev. 115 4542

    [26]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [27]

    Doles J H, Zabusky N J, Perkins F W 1976 J. Geophys. Res. 81 5987

    [28]

    Zhao H S, Feng J, Xu Z W, Wu Z S 2016 J. Geophys. Res. 121 10508

    [29]

    Zabushky N J, Doles J H, Perkins F W 1973 J. Geophys. Res. 78 711

    [30]

    Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389

    [31]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [32]

    Bernhardt P A 1987 J. Geophys. Res. 92 4617

    [33]

    Haselgrove J 1955 Proc. Phys. Soc. London 23 355

    [34]

    John M Kelso 1968 Radio Sci. 3 1

    [35]

    Zhang R F 1986 Proceedings of the International Symposium on Space Physics Beijing, China, November 10-14, 1986 pp5-100

  • [1]

    Booker H G 1961 J. Geophys. Res. 66 1073

    [2]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 187 343

    [3]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 J. Geophys. Res. 80 2217

    [4]

    Zinn J, Sutherland C D, Stone S N, Duncan L M, Behnke R 1982 J. Atmos. Terr. Phys. 44 1143

    [5]

    Mendillo M, Jeffrey M, Forbes J M 1978 J. Geophys. Res. 83 151

    [6]

    Mendillo M, Forbes J M 1982 J. Geophys. Res. 87 8273

    [7]

    Mendillo M, Smith S, Coster A, Erickson P, Baumgardner J, Martinis C 2008 SPACE WEATHER 6 S09001

    [8]

    Anderson D N, Bernhardt P A 1978 J. Geophys. Res. 83 4777

    [9]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 4341

    [10]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 793

    [11]

    Bernhardt P A 1982 J. Geophys. Res. 87 7539

    [12]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [13]

    Bernhardt P A, Weber E J, Moore J G, Baumgardner J, Mendillo M J 1986 Geophys. Res. Lett. 91 8937

    [14]

    Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401(in Chinese) [赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 65 209401]

    [15]

    Hunton D E 1993 Geophys. Res. Lett. 20 563

    [16]

    Koons H C, Rocdcr J L 1995 J. Geophys. Res. 100 5801

    [17]

    SchunkR W, Szuszczewicz E P 1988 J. Geophys. Res. 93 12901

    [18]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [19]

    Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412

    [20]

    Zalesak S T, Drake J F, Huba J D 1988 Radio Sci. 23 591

    [21]

    Zalesak S T, Drake J F, Huba J D 1990 Geophys. Res. Lett. 17 1597

    [22]

    Ma T Z, Shunk R W 1991 J. Geophys. Res. 96 5793

    [23]

    Ma T Z, Shunk R W 1993 J. Geophys. Res. 98 323

    [24]

    Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623

    [25]

    Shuman N S, Hunton D E, Viggiano A A 2015 J. Chem. Rev. 115 4542

    [26]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [27]

    Doles J H, Zabusky N J, Perkins F W 1976 J. Geophys. Res. 81 5987

    [28]

    Zhao H S, Feng J, Xu Z W, Wu Z S 2016 J. Geophys. Res. 121 10508

    [29]

    Zabushky N J, Doles J H, Perkins F W 1973 J. Geophys. Res. 78 711

    [30]

    Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389

    [31]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [32]

    Bernhardt P A 1987 J. Geophys. Res. 92 4617

    [33]

    Haselgrove J 1955 Proc. Phys. Soc. London 23 355

    [34]

    John M Kelso 1968 Radio Sci. 3 1

    [35]

    Zhang R F 1986 Proceedings of the International Symposium on Space Physics Beijing, China, November 10-14, 1986 pp5-100

  • [1] Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Comparison between ionospheric disturbances caused by barium and cesium. Acta Physica Sinica, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [2] Luo Huan, Xiao Hui. Analysis of broadening mechanism of ionospheric echo spectrum and spectrum sharpening method. Acta Physica Sinica, 2019, 68(21): 219401. doi: 10.7498/aps.68.20190887
    [3] Zhao Hai-Sheng, Xu Zheng-Wen, Xu Zhao-Hui, Xue Kun, Zheng Yan-Shuai, Xie Shou-Zhi, Feng Jie, Wu Jian. Ionospheric scintillation suppression based on chemical release. Acta Physica Sinica, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [4] Zhao Hai-Sheng, Xu Zheng-Wen, Wu Zhen-Sen, Feng Jie, Wu Jian, Xu Bin, Xu Tong, Hu Yan-Li. A three-dimensional refined modeling for the effects of SF6 release in ionosphere. Acta Physica Sinica, 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [5] Wu Jing, Zhou Zhi-Wei, Yan Xu. Propagation characteristics of power line harmonic radiation into the stratified anisotropic ionosphere. Acta Physica Sinica, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [6] Chang Shan-Shan, Ni Bin-Bin, Zhao Zheng-Yu, Wang Feng, Li Jin-Xing, Zhao Jing-Jing, Gu Xu-Dong, Zhou Chen. Test particle simulation of resonant interaction between energetic electrons in the magnetosphere and ELF/VLF waves generated by ionospheric modification. Acta Physica Sinica, 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [7] Hao Shu-Ji, Li Qing-Liang, Yang Ju-Tao, Wu Zhen-Sen. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere. Acta Physica Sinica, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [8] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Ionospheric disturbances produced by chemical releases at different release altitudes. Acta Physica Sinica, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [9] Sheng Zheng. Research on different time-scale prediction models for the total electron content. Acta Physica Sinica, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [10] Wang Feng, Zhao Zheng-Yu, Chang Shan-Shan, Ni Bin-Bin, Gu Xu-Dong. Raytracing of extreamely low frequency waves radiated from ionospheric artificial modulation at low latitude. Acta Physica Sinica, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [11] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere. Acta Physica Sinica, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [12] Hong Zhen-Jie, Liu Rong-Jian, Guo Peng, Dong Nai-Ming. Non-spherical symmetric inversion of ionospheric occultation data. Acta Physica Sinica, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [13] Hu Yao-Gai, Zhao Zheng-Yu, Xiang Wei, Zhang Yuan-Nong. Morphological control of artificial ionospheric hole and its short-wave propagation effects. Acta Physica Sinica, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [14] Xu Xian-Sheng, Hong Zhen-Jie, Guo Peng, Liu Rong-Jian. Retrieval and validation of ionospheric measurements from COSMIC radio occultation. Acta Physica Sinica, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [15] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Disturbance effects of some representative chemical releases in ionosphere. Acta Physica Sinica, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [16] Shi Run, Zhao Zheng-Yu. Preliminary study of effects introduced by the dip angle on IAR. Acta Physica Sinica, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [17] HUANG CHAO-SONG, LI JUN, M .C. KELLEY. A THEORY OF MW-LATITUDE IONOSPHERIC IRREGULARITIES PRODUCED BY ATMO-SPHERIC GRAVITY WAVES. Acta Physica Sinica, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [18] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [19] . Acta Physica Sinica, 1936, 2(2): 169-177. doi: 10.7498/aps.2.169
    [20] 研究中国天空电离层之初草报告. Acta Physica Sinica, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
Metrics
  • Abstract views:  5568
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2017
  • Accepted Date:  19 September 2017
  • Published Online:  05 January 2018

/

返回文章
返回
Baidu
map