Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical models and experiments for the time-space characteristics of internal waves generated by towed bodies

Chen Ke Wang Hong-Wei Sheng Li You Yun-Xiang

Citation:

Theoretical models and experiments for the time-space characteristics of internal waves generated by towed bodies

Chen Ke, Wang Hong-Wei, Sheng Li, You Yun-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we perform experiments on the time-space characteristics of internal waves generated by horizontally towed bodies with three aspect ratios in a stratified fluid with a halocline. By the real-time measurements of conductivity probe arrays which are arranged symmetrically in the transverse section of the stratified fluid tank, it is shown that the transition between the body-generated internal wave and the wake-generated internal wave is related to a critical Froude number Frc, which is linearly dependent on the aspect ratio. For FrFrc, the correlation velocities of internal waves are consistent with the towing speeds of the towed bodies, indicating that such internal waves in this range are dominated by the body-forced effect. The heights of such body-generated internal waves first increase with the increase of Fr until Fr reaches a certain value of Frp, which is also linearly dependent on the aspect ratio, and then decrease. For FrFrc, the correlation velocities of internal waves are noticeably lower than the towing speeds, indicating that such internal waves in this range are dominated by the wake-forced effect, and that the Froude numbers with respect to the correlation velocities of such internal waves vary in a range from 0.43 to 1.18. The heights of such wake-generated internal waves nearly linearly increase with Fr increasing regardless of the aspect ratio. Moreover, the patterns of body-generated waves are symmetric, while the patterns of wake-generated waves are not symmetric. Based on the experimental results and the equivalent source method which has been proposed to simulate the internal waves generated by a towed sphere, a new equivalent source method is developed to calculate the internal waves generated by towed slender bodies. For the body-generated waves, the method of designing the speed, length and diameter of the equivalent source is proposed. The symmetrical and anti-symmetrical equivalent source and their speed and size are also proposed for the wake-generated waves. The numerical results are in good accordance with the experimental results in the heights and patterns of waves, indicating that such a theoretical method and its parameter settings are reasonable and effective.
      Corresponding author: Chen Ke, raulphan@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072153, 11372184).
    [1]

    Liang J J, Du T, Huang W G, Zeng K, He M X 2016 J. Ship Mech. 20 635 (in Chinese) [梁建军, 杜涛, 黄韦艮, 曾侃, 贺明霞 2016 船舶力学 20 635]

    [2]

    Robey H F 1997 Phys. Fluids 9 3353

    [3]

    Hopfinger E J, Flor J B, Chomaz J M, Bonneton P 1991 Exp. Fluids 11 255

    [4]

    Lin Q, Boyer D L, Fernando H J S 1993 Exp. Fluids 15 147

    [5]

    Chomaz J M, Bonneton P, Hopfinger E J 1993 J. Fluid Mech. 254 1

    [6]

    Bonneton P, Chomaz J M, Hopfinger E J 1993 J. Fluid Mech. 254 23

    [7]

    Wei G, Zhao X Q, Su X B, You Y X 2009 Sci. China: Series G 39 1338 (in Chinese) [魏岗, 赵先奇, 苏晓冰, 尤云祥 2009 中国科学G 39 1338]

    [8]

    Zhao X Q, You Y X, Chen K, Hu T Q, Wei G 2009 J. Shanghai Jiao Tong Univ. 43 1298 (in Chinese) [赵先奇, 尤云祥, 陈科, 胡天群, 魏岗 2009 上海交通大学学报 43 1298]

    [9]

    Wang J, You Y X, Hu T Q, Wang X Q, Zhu M H 2012 Acta Phys. Sin. 61 074701 (in Chinese) [王进, 尤云祥, 胡天群, 王小青, 朱敏慧 2012 61 074701]

    [10]

    Wang J, You Y X, Hu T Q, Zhu M H, Wang X Q, Wei G 2012 Chin. Sci. Bull. 57 606 (in Chinese) [王进, 尤云祥, 胡天群, 朱敏慧, 王小青, 魏岗 2012 科学通报 57 606]

    [11]

    Wang H W, Chen K, You Y X, Zhang X S 2017 Chin. Sci. Bull. 62 2132 (in Chinese) [王宏伟, 陈科, 尤云祥, 张新曙 2017 科学通报 62 2132]

    [12]

    Lighthill J 1978 Waves in Fluid (Cambridge: Cambridge University Press) pp23-30

    [13]

    Keller J B, Munk W H 1970 Phys. Fluids 13 1425

    [14]

    Miles J W 1971 Geo. Fluid Dynamics 2 63

    [15]

    Gray E P 1983 Phys. Fluids 26 2919

    [16]

    Voisin B 1994 J. Fluid Mech. 261 333

    [17]

    Yeung R W, Nguyen T C 1999 J. Eng. Math. 35 85

    [18]

    Broutman D, Rottman J, Eckermann S D 2004 Annu. Rev. Fluid Mech. 36 233

    [19]

    Milder M 1974 Internal Waves Radiated by a Moving Source Technical Report (Vol. 1) (Santa Monica: Defense Advanced Research Projects Agency) pp19-25

    [20]

    You Y X, Zhao X Q, Chen K, Wei G 2009 Acta Phys. Sin. 58 6750 (in Chinese) [尤云祥, 赵先奇, 陈科, 魏岗 2009 58 6750]

    [21]

    Brandt A, Rottier J R 2015 J. Fluid Mech. 769 103

    [22]

    Lin J T, Pao Y H 1979 Annu. Rev. Fluid Mech. 11 317

    [23]

    Gilreath H E, Brandt A 1985 AIAA J. 23 693

    [24]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin. 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 60 044704]

    [25]

    Dupont P, Kadri Y, Chomaz J M 2001 Phys. Fluids 13 3223

    [26]

    Druzhinin O A, Papko V V, Sergeev D A, Troitskaya Y I 2006 Izv. Atmos. Ocean. Phys. 42 615

    [27]

    Druzhinin O A 2009 Fluid Dyn. 44 213

    [28]

    Vasholz D P 2011 Theoretical and Computational Fluid Dynamics 25 357

    [29]

    Diamessis P J, Gurka R, Liberzon A 2010 Phys. Fluids 22 086601

    [30]

    Abdilghanie A M, Diamessis P J 2013 J. Fluid Mech. 720 104

    [31]

    Yao Z C, Zhao F, Liang C, Hong F W, Zhang J 2017 J. Ship Mech. 21 8 (in Chinese) [姚志崇, 赵峰, 梁川, 洪方文, 张军 2017 船舶力学 21 8]

    [32]

    Dupont P, Voisin B 1996 Dynamics Atmo. Oceans 23 289

    [33]

    Liang C, Hong F W, Yao Z C 2015 J. Hydrodynamics Ser. A 30 9 (in Chinese) [梁川, 洪方文, 姚志崇 2015 水动力学研究与进展 30 9]

    [34]

    Cai S, Xie J, Xu J, Wang D, Chen Z, Deng X, Long X 2014 Deep Sea Res. Part I 84 73

  • [1]

    Liang J J, Du T, Huang W G, Zeng K, He M X 2016 J. Ship Mech. 20 635 (in Chinese) [梁建军, 杜涛, 黄韦艮, 曾侃, 贺明霞 2016 船舶力学 20 635]

    [2]

    Robey H F 1997 Phys. Fluids 9 3353

    [3]

    Hopfinger E J, Flor J B, Chomaz J M, Bonneton P 1991 Exp. Fluids 11 255

    [4]

    Lin Q, Boyer D L, Fernando H J S 1993 Exp. Fluids 15 147

    [5]

    Chomaz J M, Bonneton P, Hopfinger E J 1993 J. Fluid Mech. 254 1

    [6]

    Bonneton P, Chomaz J M, Hopfinger E J 1993 J. Fluid Mech. 254 23

    [7]

    Wei G, Zhao X Q, Su X B, You Y X 2009 Sci. China: Series G 39 1338 (in Chinese) [魏岗, 赵先奇, 苏晓冰, 尤云祥 2009 中国科学G 39 1338]

    [8]

    Zhao X Q, You Y X, Chen K, Hu T Q, Wei G 2009 J. Shanghai Jiao Tong Univ. 43 1298 (in Chinese) [赵先奇, 尤云祥, 陈科, 胡天群, 魏岗 2009 上海交通大学学报 43 1298]

    [9]

    Wang J, You Y X, Hu T Q, Wang X Q, Zhu M H 2012 Acta Phys. Sin. 61 074701 (in Chinese) [王进, 尤云祥, 胡天群, 王小青, 朱敏慧 2012 61 074701]

    [10]

    Wang J, You Y X, Hu T Q, Zhu M H, Wang X Q, Wei G 2012 Chin. Sci. Bull. 57 606 (in Chinese) [王进, 尤云祥, 胡天群, 朱敏慧, 王小青, 魏岗 2012 科学通报 57 606]

    [11]

    Wang H W, Chen K, You Y X, Zhang X S 2017 Chin. Sci. Bull. 62 2132 (in Chinese) [王宏伟, 陈科, 尤云祥, 张新曙 2017 科学通报 62 2132]

    [12]

    Lighthill J 1978 Waves in Fluid (Cambridge: Cambridge University Press) pp23-30

    [13]

    Keller J B, Munk W H 1970 Phys. Fluids 13 1425

    [14]

    Miles J W 1971 Geo. Fluid Dynamics 2 63

    [15]

    Gray E P 1983 Phys. Fluids 26 2919

    [16]

    Voisin B 1994 J. Fluid Mech. 261 333

    [17]

    Yeung R W, Nguyen T C 1999 J. Eng. Math. 35 85

    [18]

    Broutman D, Rottman J, Eckermann S D 2004 Annu. Rev. Fluid Mech. 36 233

    [19]

    Milder M 1974 Internal Waves Radiated by a Moving Source Technical Report (Vol. 1) (Santa Monica: Defense Advanced Research Projects Agency) pp19-25

    [20]

    You Y X, Zhao X Q, Chen K, Wei G 2009 Acta Phys. Sin. 58 6750 (in Chinese) [尤云祥, 赵先奇, 陈科, 魏岗 2009 58 6750]

    [21]

    Brandt A, Rottier J R 2015 J. Fluid Mech. 769 103

    [22]

    Lin J T, Pao Y H 1979 Annu. Rev. Fluid Mech. 11 317

    [23]

    Gilreath H E, Brandt A 1985 AIAA J. 23 693

    [24]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin. 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 60 044704]

    [25]

    Dupont P, Kadri Y, Chomaz J M 2001 Phys. Fluids 13 3223

    [26]

    Druzhinin O A, Papko V V, Sergeev D A, Troitskaya Y I 2006 Izv. Atmos. Ocean. Phys. 42 615

    [27]

    Druzhinin O A 2009 Fluid Dyn. 44 213

    [28]

    Vasholz D P 2011 Theoretical and Computational Fluid Dynamics 25 357

    [29]

    Diamessis P J, Gurka R, Liberzon A 2010 Phys. Fluids 22 086601

    [30]

    Abdilghanie A M, Diamessis P J 2013 J. Fluid Mech. 720 104

    [31]

    Yao Z C, Zhao F, Liang C, Hong F W, Zhang J 2017 J. Ship Mech. 21 8 (in Chinese) [姚志崇, 赵峰, 梁川, 洪方文, 张军 2017 船舶力学 21 8]

    [32]

    Dupont P, Voisin B 1996 Dynamics Atmo. Oceans 23 289

    [33]

    Liang C, Hong F W, Yao Z C 2015 J. Hydrodynamics Ser. A 30 9 (in Chinese) [梁川, 洪方文, 姚志崇 2015 水动力学研究与进展 30 9]

    [34]

    Cai S, Xie J, Xu J, Wang D, Chen Z, Deng X, Long X 2014 Deep Sea Res. Part I 84 73

  • [1] He Zhao-Yang, Lei Bo, Yang Yi-Xin. Acoustic field fluctuation caused by source-generated internal waves and its detection method. Acta Physica Sinica, 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [2] Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [3] Dedign of wide-angle metamaterial absorbers based on equivalent medium theory*. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20201448
    [4] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [5] Yang De-Sen,  Zhang Rui,  Shi Sheng-Guo. Sound radiation from finite cylindrical shell excited by inner finite-size sources. Acta Physica Sinica, 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [6] Qin Ji-Xing, Katsnelson Boris, Peng Zhao-Hui, Li Zheng-Lin, Zhang Ren-He, Luo Wen-Yu. Three-dimensional adiabatic mode parabolic equation method and its applications. Acta Physica Sinica, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [7] Cui Wei, Yan Zai-Zai, Mu Ren. Second-order Stokes wave solutions for gravity capillary water waves in three-layer dendity-stratified fluid. Acta Physica Sinica, 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [8] Song Wen-Hua, Hu Tao, Guo Sheng-Ming, Ma Li. Time-varying characteristics of the waveguide invariant under internal wave condition in the shallow water area. Acta Physica Sinica, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] Huang Wen-Hao, You Yun-Xiang, Wang Xu, Hu Tian-Qun. Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth. Acta Physica Sinica, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [10] Zhang Peng, Zhang Xiao-Juan. Investigation on the reconstruction of objects buried in layered media based on the equivalent current source. Acta Physica Sinica, 2013, 62(16): 164201. doi: 10.7498/aps.62.164201
    [11] Wang Jing, Ma Rui-Ling, Wang Long, Meng Jun-Min. Numerical simulation of the spread of internal waves see from deep sea to shallow sea from the mixed model. Acta Physica Sinica, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [12] Wang Jin, You Yun-Xiang, Hu Tian-Qun, Wang Xiao-Qing, Zhu Min-Hui. The characteristics of internal waves generated by a revolution body in a stratified fluid with a pycnocline. Acta Physica Sinica, 2012, 61(7): 074701. doi: 10.7498/aps.61.074701
    [13] Wei Gang, Wu Ning, Xu Xiao-Hui, Su Xiao-Bing, You Yun-Xiang. Experiments on the generation of internal wavesby a hemispheroid in a linearly stratified fluid. Acta Physica Sinica, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [14] Zhu Min-Hui, Wang Xiao-Qing, Chen Ke, You Yun-Xiang, Hu Tian-Qun. Experiments on quasi-two-dimensional dipolar vortex streets generated by a moving momentum source in a stratified fluid. Acta Physica Sinica, 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [15] Wen Wen-Ying, Chen Xiao-Gang, Song Jin-Bao. The theory of nonlinear interfacial-internal wave propagation in three-layer fluid systems. Acta Physica Sinica, 2010, 59(10): 7149-7157. doi: 10.7498/aps.59.7149
    [16] You Yun-Xiang, Zhao Xian-Qi, Chen Ke, Wei Gang. An equivalent mass source method for internal waves generated by a body moving in a stratified fluid of finite depth. Acta Physica Sinica, 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [17] Pang Jing, Chen Xiao-Gang, Song Jin-Bao. Second-order Stokes wave solutions for intefacial waves in three-layer stratified fluid with background current. Acta Physica Sinica, 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [18] Chen Xiao-Gang, Song Jin-Bao, Sun Qun. Second-order Stokes solutions for internal waves in three-layer density-stratified fluid. Acta Physica Sinica, 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [19] YAN JIA-REN, ZHONG JIAN-XIN. SOLITARY WAVES ON A TWO-LAYER FLUID WITH BASIC CURRENTS. Acta Physica Sinica, 1990, 39(9): 1393-1399. doi: 10.7498/aps.39.1393
    [20] YAN JIA-REN, HUANG GUO-XIANG, HUANG NIAN-NING. NON-PROPAGATING SOLITARY WAVES ON THE INTERFACE BETWEEN TWO LAYERS OF FLUIDS IN RECTANGULAR WAVEGUIDE. Acta Physica Sinica, 1988, 37(5): 874-880. doi: 10.7498/aps.37.874
Metrics
  • Abstract views:  5875
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2017
  • Accepted Date:  18 September 2017
  • Published Online:  05 February 2018

/

返回文章
返回
Baidu
map