搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限深两层流体中内孤立波造波实验及其理论模型

黄文昊 尤云祥 王旭 胡天群

引用本文:
Citation:

有限深两层流体中内孤立波造波实验及其理论模型

黄文昊, 尤云祥, 王旭, 胡天群

Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth

Huang Wen-Hao, You Yun-Xiang, Wang Xu, Hu Tian-Qun
PDF
导出引用
  • 将置于大尺度密度分层水槽上下层流体中的两块垂直板反方向平推, 以基于 Miyata-Choi-Camassa (MCC)理论解的内孤立波诱导上下层流体中的层平均水平速度作为其运动速度, 发展了一种振幅可控的双推板内孤立波实验室造波方法. 在此基础上, 针对有限深两层流体中定态内孤立波 Korteweg-de Vries (KdV), 扩展KdV (eKdV), MCC和修改的Kdv (mKdV)理论的适用性条件等问题, 开展了系列实验研究.结果表明, 对以水深为基准定义的非线性参数ε 和色散参数μ, 存在一个临界色散参数μ0, 当μ μ0 时, KdV理论适用于ε ≤μ 的情况, eKdV理论适用于μ ε ≤√μ 的情况, 而MCC理论适用于ε > √μ 的情况, 而且当μ ≥μ0 时MCC理论也是适用的.结果进一步表明, 当上下层流体深度比并不接近其临界值时, mKdV理论主要适用于内孤立波振幅接近其理论极限振幅的情况, 但这时MCC理论同样适用.本项研究定量地表征了四类内孤立波理论的适用性条件, 为采用何种理论来表征实际海洋中的内孤立波特征提供了理论依据.
    A laboratory wave-making method is developed for the internal solitary wave under the condition of giving its amplitude produced by oppositely and horizontally pushing two vertical plates placed separately in the upper- and lower-layer fluids of a large-scale density stratified tank where based on the Miyata-Choi-Camassa (MCC) theoretical model, the layer-mean velocities of the upper- and lower-layer fluids induced by the internal solitary wave are used as the velocities of the two plates. On this basis, a series of experiments is conducted to explore the applicability conditions for internal solitary wave theories with stationary solutions which are Korteweg-de Vries (KdV), extended KdV (eKdV), MCC and modified KdV (mKdV) models in a two-layer fluid of finite depth respectively. It is shown that for the nonlinear parameter ε and the dispersion parameter μ defined by the total water depth, there exists a critical dispersion parameter μ0, in the case of μ μ0, the KdV model is applicable for ε ≤μ, the eKdV model is applicable for μ ε ≤√μ, as well as the MCC model is applicable for ε > √μ. However, in the case of μ ≥ μ0, the MCC model is still applicable for a wide range of ε. Furthermore, for the case where the ratio of depth between the upper- and lower-layer fluids is not close to its critical value, the mKdV model is mainly applicable for the case where the amplitude of the internal solitary wave is close to its theoretical limiting amplitude, however, the MCC model is also applicable for such a case. The investigation quantitatively characterizes the applicability conditions for four classes of internal solitary wave theories, and provides an important theoretical foundation for what kinds of theories can be chosen to model internal solitary waves in the ocean.
    • 基金项目: 国家高技术研究发展计划(批准号:2010AA09z305) 和高等学校博士学科点专项科研基金(批准号:20110073130003) 资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2010AA09z305) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110073130003).
    [1]

    Wang J, Ma R L, Wang L, Meng J M 2012 Acta Phys. Sin. 61 064701 (in Chinese) [王晶, 马瑞玲, 王龙, 孟俊敏 2012 61 064701]

    [2]

    Fang X H, Du T 2005 Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao:Ocean University of China Press) p101 (in Chinese) [方欣华, 杜涛 2005 海洋内波基础和中国海内波(青岛:中国海洋大学出版社, 第101页]

    [3]

    Helfrich K R, Melville W K 2006 Ann. Rev. Fluid Mech. 38 395

    [4]

    Shi X G, Fan Z S, Li P L 2009 Period. Ocean Univ. Chin. 39 297 (in Chinese) [石新刚, 范植松, 李培良 2009 中国海洋大学学报 39 297]

    [5]

    Li J, Gu X F, Yu T, Hu X L, Sun Y, Guo D, Xu J P 2011 Trans. Oceanol. Limnol. 1 1 (in Chinese) [李鹃, 顾行发, 余涛, 胡新礼, 孙源, 郭丁, 徐京萍 2011 海洋湖沼通报 1 1]

    [6]

    Chen G Y, Su F C, Wang C M, Liu C T, Tseng R S 2011 J. Oceanogr. 67 689

    [7]

    Koop C G, Butler G 1981 J. Fluid Mech. 112 225

    [8]

    Segur H, Hammack J L 1982 J. Fluid Mech. 118 285

    [9]

    Helfrich K R, Melville W K 1986 J. Fluid Mech. 167 285

    [10]

    Michallet H, Barthelemy E 1998 J. Fluid Mech. 366 159

    [11]

    Grue J, Jensen A, Rusas P O, Seveen J K 1999 J. Fluid Mech. 380 257

    [12]

    Sveen J K, Guo Y, Davies P A, Grue J 2002 J. Fluid Mech. 469 161

    [13]

    Walker S A, Martin A J, EASSON W J, Evans W A B 2003 J. Waterw. Port Coastal Ocean Eng. 5 210

    [14]

    Brandt P, Rubino A, Alpers W, Backhaus J O 1997 J. Phys. Oceanogr. 27 648

    [15]

    Grimshaw R, Slunyaev A, Pelinovsky E 2010 Chaos 20 013102

    [16]

    Du T, Yan X H, Timothy D 2010 Chin. J. Oceanol. Limnol. 28 658

    [17]

    Funakoshi M, Oikawa M 1986 J. Phys. Soc. Jpn. 55 128

    [18]

    Xu Z, Yin B S, Hou Y J 2010 Chin. J. Oceanol. Limnol. 28 1049

    [19]

    Choi W, Camassa R 1999 J. Fluid Mech. 396 1

    [20]

    Miyata M 1985 Mer. Tokyo 23 43

    [21]

    Ruiz Z A, Nachbin A 2008 Commun. Math. Sci. 2 385

    [22]

    Debsarma S, Das K P, Kirby J T 2010 J. Fluid Mech. 654 281

    [23]

    Camassa R, Choi W, Michallet H, Rusas P O, Sveen J K 2006 J. Fluid Mech. 549 1

    [24]

    Wessels F, Hutter K 1996 J. Phys. Oceanogr. 26 5

    [25]

    Maderich V, Talipova T, Grimshaw R, Terletska K, Brovchenko I, Pelinovsky E, Choi B H 2010 Phys. Fluids 22 1

  • [1]

    Wang J, Ma R L, Wang L, Meng J M 2012 Acta Phys. Sin. 61 064701 (in Chinese) [王晶, 马瑞玲, 王龙, 孟俊敏 2012 61 064701]

    [2]

    Fang X H, Du T 2005 Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao:Ocean University of China Press) p101 (in Chinese) [方欣华, 杜涛 2005 海洋内波基础和中国海内波(青岛:中国海洋大学出版社, 第101页]

    [3]

    Helfrich K R, Melville W K 2006 Ann. Rev. Fluid Mech. 38 395

    [4]

    Shi X G, Fan Z S, Li P L 2009 Period. Ocean Univ. Chin. 39 297 (in Chinese) [石新刚, 范植松, 李培良 2009 中国海洋大学学报 39 297]

    [5]

    Li J, Gu X F, Yu T, Hu X L, Sun Y, Guo D, Xu J P 2011 Trans. Oceanol. Limnol. 1 1 (in Chinese) [李鹃, 顾行发, 余涛, 胡新礼, 孙源, 郭丁, 徐京萍 2011 海洋湖沼通报 1 1]

    [6]

    Chen G Y, Su F C, Wang C M, Liu C T, Tseng R S 2011 J. Oceanogr. 67 689

    [7]

    Koop C G, Butler G 1981 J. Fluid Mech. 112 225

    [8]

    Segur H, Hammack J L 1982 J. Fluid Mech. 118 285

    [9]

    Helfrich K R, Melville W K 1986 J. Fluid Mech. 167 285

    [10]

    Michallet H, Barthelemy E 1998 J. Fluid Mech. 366 159

    [11]

    Grue J, Jensen A, Rusas P O, Seveen J K 1999 J. Fluid Mech. 380 257

    [12]

    Sveen J K, Guo Y, Davies P A, Grue J 2002 J. Fluid Mech. 469 161

    [13]

    Walker S A, Martin A J, EASSON W J, Evans W A B 2003 J. Waterw. Port Coastal Ocean Eng. 5 210

    [14]

    Brandt P, Rubino A, Alpers W, Backhaus J O 1997 J. Phys. Oceanogr. 27 648

    [15]

    Grimshaw R, Slunyaev A, Pelinovsky E 2010 Chaos 20 013102

    [16]

    Du T, Yan X H, Timothy D 2010 Chin. J. Oceanol. Limnol. 28 658

    [17]

    Funakoshi M, Oikawa M 1986 J. Phys. Soc. Jpn. 55 128

    [18]

    Xu Z, Yin B S, Hou Y J 2010 Chin. J. Oceanol. Limnol. 28 1049

    [19]

    Choi W, Camassa R 1999 J. Fluid Mech. 396 1

    [20]

    Miyata M 1985 Mer. Tokyo 23 43

    [21]

    Ruiz Z A, Nachbin A 2008 Commun. Math. Sci. 2 385

    [22]

    Debsarma S, Das K P, Kirby J T 2010 J. Fluid Mech. 654 281

    [23]

    Camassa R, Choi W, Michallet H, Rusas P O, Sveen J K 2006 J. Fluid Mech. 549 1

    [24]

    Wessels F, Hutter K 1996 J. Phys. Oceanogr. 26 5

    [25]

    Maderich V, Talipova T, Grimshaw R, Terletska K, Brovchenko I, Pelinovsky E, Choi B H 2010 Phys. Fluids 22 1

  • [1] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型.  , 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律.  , 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [3] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性.  , 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [4] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制.  , 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [5] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究.  , 2021, (): . doi: 10.7498/aps.70.20211132
    [6] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制.  , 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [7] 崔巍, 闫在在, 木仁. 三层密度分层流体毛细重力波二阶Stokes波解.  , 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [8] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波.  , 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [9] 杜辉, 魏岗, 张原铭, 徐小辉. 内孤立波沿缓坡地形传播特性的实验研究.  , 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [10] 殷久利, 樊玉琴, 张娟, 田立新. 几类新的可积非线性色散项方程及其孤立波解.  , 2011, 60(8): 080201. doi: 10.7498/aps.60.080201
    [11] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究.  , 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [12] 江波, 韩修静, 毕勤胜. 一类非线性色散Boussinesq方程的隐式孤立波解.  , 2010, 59(12): 8343-8347. doi: 10.7498/aps.59.8343
    [13] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解.  , 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [14] 温文媖, 陈小刚, 宋金宝. 三层流体系统非线性界面内波传播理论的研究.  , 2010, 59(10): 7149-7157. doi: 10.7498/aps.59.7149
    [15] 殷久利, 田立新. 一类非线性色散方程中的新型奇异孤立波.  , 2009, 58(6): 3632-3636. doi: 10.7498/aps.58.3632
    [16] 尤云祥, 赵先奇, 陈科, 魏岗. 有限深密度分层流体中运动物体生成内波的一种等效质量源方法.  , 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [17] 陈小刚, 宋金宝, 孙 群. 三层流体界面内波的二阶Stokes解.  , 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [18] 颜家壬, 钟建新. 具有基本流动的两层流体界面和表面孤波.  , 1990, 39(9): 1393-1399. doi: 10.7498/aps.39.1393
    [19] 颜家壬, 黄国翔, 黄念宁. 矩形波导中两层流体界面上的非传播孤立波.  , 1988, 37(5): 874-880. doi: 10.7498/aps.37.874
    [20] 陶福臻. 引力孤立波.  , 1987, 36(3): 350-356. doi: 10.7498/aps.36.350
计量
  • 文章访问数:  7779
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-11
  • 修回日期:  2012-11-05
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map