搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有密度跃层分层流体中回转体激发内波特性实验

王进 尤云祥 胡天群 王小青 朱敏慧

引用本文:
Citation:

具有密度跃层分层流体中回转体激发内波特性实验

王进, 尤云祥, 胡天群, 王小青, 朱敏慧

The characteristics of internal waves generated by a revolution body in a stratified fluid with a pycnocline

Wang Jin, You Yun-Xiang, Hu Tian-Qun, Wang Xiao-Qing, Zhu Min-Hui
PDF
导出引用
  • 在具有连续密度跃层的分层流体中,对长径比为7:1的回转体在迎水和背水运动下激发体积效应与尾迹效应内波特性开展了系列实验.结果表明,体积效应激发内波属于一种相对于回转体定常的多模态Lee波结构,而尾迹效应激发主控内波为相对于回转体非定常的拟Lee波结构,这是一类由湍流尾迹中大尺度相干结构作为移动源激发的内波结构,在Lee波与拟Lee波之间存在一个与长径比近似为线性关系的临界转捩Froude数Frc,当FrFrc 时拟Lee波为主控内波,而当FrFrc时拟Lee波为主控内波,而且拟Lee波相关速度Froude数近似为一个常数0.8,其无因次峰-峰幅值随Fr的增大近似线性增大,其中Fr为回转体特征直径Froude数.结果还表明,回转体头部与尾部几何形式并不影响其激发内波临界转捩Froude数Frc、拟Lee波相关速度Froude数及其峰-峰幅值变化特性.
    Experiments are conducted for the characteristics of both body and wake-generated internal waves due to a revolution body (aspect ratio 7:1) in a stratified fluid with a pycnocline where the revolution body is horizontally towed in forward and backward ways. Results show that the body-generated internal waves are a type of stationary multiple-mode Lee wave structures, and the wake-generated internal waves are a type of non-stationary quasi-Lee structures produced by the large-scale coherent structure in the turbulent wake acting as a moving excitation with respect to the towed revolution body. The transition between Lee and quasi-Lee waves occurs at a critical Froude number Frc which is shown to be linearly dependent on the aspect ratios of the revolution bodies where the wave patterns for FrFrc are dominated byLee waves,whereas the wave patterns forFrFrcare dominated by quasi-Lee waves,Fr is the Froude number for the characteristic diameter of the revolution body. For the quasi-Lee waves, the dimensionless peak-to-peak amplitudes linearly increase with Fr and the Froude numbers relative to the correlation velocities remain at a relatively constant value of approximately 0.8 regardless of the aspect ratios. Moreover, the head and the tail shapes of the revolution body have no remarkable influence on the critical Froude number Frc, as well as both the Froude numbers relative to the correlation velocities and the dimensionless peak-to-peak amplitudes of the quasi-Lee waves.
    • 基金项目: 国家自然科学基金(资助号:11072153)和海洋工程国家重点实验室基金(资助号:GP010819)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China(Grant No.11072153), and the State Key Laboratory Foundation of Ocean Engineering(Grant No GP010819).
    [1]

    Wei G,Dai S Q 2006 Advances in Mechanics 36 111 (in Chinese)[魏岗,戴世强 2006 力学进展 36 111]

    [2]

    Nguyen HP 1993 United States Naval Institue Press Annapolis Md.

    [3]

    Chung Y K,Lim J S 1991 J.Ship.Res.35 191

    [4]

    Keller J B,Munk W H 1970 Phys.Fluids 13 1425

    [5]

    Voisin B 1994 J.Fluid Mech.261 333

    [6]

    Lin Q,Linberg WR,Boyer D L,Fernado H J S 1992 Phys.Fluids 8 1687

    [7]

    Spedding G R,Browand F K,Fincham A M 1996 Dyn.Armos.Ocean 23 171

    [8]

    Bonnier M,Eiff O 2002 Phys.Fluids 14 791

    [9]

    Meunier P,Diamessis P J,Spedding G R 2006 Phys.Fluids 18 1

    [10]

    Gilreath H E,Brandt A 1985 AIAA Journal 23 693

    [11]

    Chomaz J M,Bonneton P,Hopfinger E J 1993 J.Fluid Mech.254 1

    [12]

    Bounneton P,Chomz J M,Hopfinger E J 1993 J.Fluid Mech.254 23

    [13]

    Plougonven R,Zeitlin V 2002 Phys.Fluids 14 1259

    [14]

    You Y X,Zhao X Q,Chen K,Wei G 2009 Acta Phys.Sin.58 6750 (in Chinese)[尤云祥,赵先奇,陈科,魏岗 2009 {bf 58 6750]

    [15]

    Wei G,Wu N,Xu X H,Su X B,You Y X 2011 Acta Phys.Sin.60 1 (in Chinese)[魏岗,吴宁,徐小辉,苏晓冰,尤云祥 2011 60 1]

    [16]

    Wei G,Zhao X Q,Su X B,You Y X 2009 Science in China Series G 39 1338 (in Chinese)[魏岗,赵先奇,苏晓冰,尤云祥 2009 中国科学 G {bf 39 1338]

    [17]

    Robey HF 1997 Phys Fluids 9 3353

    [18]

    Zhao X Q,You Y X,Chen K,Hu T Q,Wei G 2009 Journal of Shanghai Jiaotong University 43 1298 (in Chinese)[赵先奇,尤云祥,陈科,胡天群,魏岗 2009 上海交通大学学报 43 1298]

  • [1]

    Wei G,Dai S Q 2006 Advances in Mechanics 36 111 (in Chinese)[魏岗,戴世强 2006 力学进展 36 111]

    [2]

    Nguyen HP 1993 United States Naval Institue Press Annapolis Md.

    [3]

    Chung Y K,Lim J S 1991 J.Ship.Res.35 191

    [4]

    Keller J B,Munk W H 1970 Phys.Fluids 13 1425

    [5]

    Voisin B 1994 J.Fluid Mech.261 333

    [6]

    Lin Q,Linberg WR,Boyer D L,Fernado H J S 1992 Phys.Fluids 8 1687

    [7]

    Spedding G R,Browand F K,Fincham A M 1996 Dyn.Armos.Ocean 23 171

    [8]

    Bonnier M,Eiff O 2002 Phys.Fluids 14 791

    [9]

    Meunier P,Diamessis P J,Spedding G R 2006 Phys.Fluids 18 1

    [10]

    Gilreath H E,Brandt A 1985 AIAA Journal 23 693

    [11]

    Chomaz J M,Bonneton P,Hopfinger E J 1993 J.Fluid Mech.254 1

    [12]

    Bounneton P,Chomz J M,Hopfinger E J 1993 J.Fluid Mech.254 23

    [13]

    Plougonven R,Zeitlin V 2002 Phys.Fluids 14 1259

    [14]

    You Y X,Zhao X Q,Chen K,Wei G 2009 Acta Phys.Sin.58 6750 (in Chinese)[尤云祥,赵先奇,陈科,魏岗 2009 {bf 58 6750]

    [15]

    Wei G,Wu N,Xu X H,Su X B,You Y X 2011 Acta Phys.Sin.60 1 (in Chinese)[魏岗,吴宁,徐小辉,苏晓冰,尤云祥 2011 60 1]

    [16]

    Wei G,Zhao X Q,Su X B,You Y X 2009 Science in China Series G 39 1338 (in Chinese)[魏岗,赵先奇,苏晓冰,尤云祥 2009 中国科学 G {bf 39 1338]

    [17]

    Robey HF 1997 Phys Fluids 9 3353

    [18]

    Zhao X Q,You Y X,Chen K,Hu T Q,Wei G 2009 Journal of Shanghai Jiaotong University 43 1298 (in Chinese)[赵先奇,尤云祥,陈科,胡天群,魏岗 2009 上海交通大学学报 43 1298]

  • [1] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波.  , 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [2] 宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴. 基于势流理论的回转体并联入水双空泡演化动力学研究.  , 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [3] 陈科, 王宏伟, 盛立, 尤云祥. 拖曳体激发内波时空特性实验及其理论模型.  , 2018, 67(3): 034701. doi: 10.7498/aps.67.20170920
    [4] 王飞, 魏兵. 分层有耗手征介质中斜入射电磁波的传播矩阵.  , 2017, 66(6): 064101. doi: 10.7498/aps.66.064101
    [5] 马琦, 胡文祥, 徐琰锋, 王浩. 流体-镀层基底界面波的传播特性.  , 2017, 66(8): 084302. doi: 10.7498/aps.66.084302
    [6] 王言金, 张树道, 李华, 周海兵. 炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数.  , 2016, 65(10): 106401. doi: 10.7498/aps.65.106401
    [7] 刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰. 基于回转体型艇身的电磁流体表面推进与矢量控制特性研究.  , 2014, 63(7): 074704. doi: 10.7498/aps.63.074704
    [8] 崔巍, 闫在在, 木仁. 三层密度分层流体毛细重力波二阶Stokes波解.  , 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [9] 黄文昊, 尤云祥, 王旭, 胡天群. 有限深两层流体中内孤立波造波实验及其理论模型.  , 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [10] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究.  , 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [11] 陈科, 尤云祥, 胡天群, 朱敏慧, 王小青. 分层流体中移动动量源生成准二维偶极子涡街特性实验.  , 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [12] 温文媖, 陈小刚, 宋金宝. 三层流体系统非线性界面内波传播理论的研究.  , 2010, 59(10): 7149-7157. doi: 10.7498/aps.59.7149
    [13] 尤云祥, 赵先奇, 陈科, 魏岗. 有限深密度分层流体中运动物体生成内波的一种等效质量源方法.  , 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [14] 庞 晶, 陈小刚, 宋金宝. 有流存在时三层流体界面波的二阶Stokes波解.  , 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [15] 张维佳, 王天民, 崔 敏, 戎霭伦. 有ITO透明导电膜的平面分层介质系统的电磁波性能理论研究.  , 2006, 55(3): 1295-1300. doi: 10.7498/aps.55.1295
    [16] 陈小刚, 宋金宝, 孙 群. 三层流体界面内波的二阶Stokes解.  , 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [17] 唐驾时, 刘铸永, 李学平. MKdV方程的拟小波解.  , 2003, 52(3): 522-525. doi: 10.7498/aps.52.522
    [18] 颜家壬, 钟建新. 具有基本流动的两层流体界面和表面孤波.  , 1990, 39(9): 1393-1399. doi: 10.7498/aps.39.1393
    [19] 颜家壬, 黄国翔, 黄念宁. 矩形波导中两层流体界面上的非传播孤立波.  , 1988, 37(5): 874-880. doi: 10.7498/aps.37.874
    [20] 张金标. 分层介质中金属栅的平面波散射.  , 1976, 25(2): 162-167. doi: 10.7498/aps.25.162
计量
  • 文章访问数:  7436
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-22
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回
Baidu
map