Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-diffraction propagation and anomalous refraction of light wave in honeycomb photonic lattices

Rao Bing-Jie Liu Sheng Zhao Jian-Lin

Citation:

Non-diffraction propagation and anomalous refraction of light wave in honeycomb photonic lattices

Rao Bing-Jie, Liu Sheng, Zhao Jian-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photonic band-gap of light wave in spatial frequency model depicts the linear propagation characteristics of the light wave in period structures, based on which the linear diffraction and refraction of light are defined. In this paper, we numerically study the non-diffraction propagation and anomalous refraction of light waves in honeycomb photonic lattices according to the diffraction relationship of the photonic band-gap.By calculating the photonic band-gap structure, the linear propagation characteristics in the first transmission band are analyzed. The first Brillouin zone of the honeycomb lattice can be divided into different diffraction (Dx and Dy) and refraction regions (Δx and Δy), according to the definitions of light diffraction and refraction along the x-and y-axis. Light wave can present normal, anomalous diffraction and even non-diffraction when the wave vector matches the regions of Dx, y Dx, y > 0 and Dx, y=0, respectively. And the wave experiences the positive, negative refractions, and non-deflection when the refraction region meets the conditions:Δx, y x, y > 0 and Δx, y=0, respectively.By matching the input wave vectors to the contour lines of Dx=0 and Dy=0, we can realize the non-diffraction propagation along the x-and y-axis, respectively. When the input wave vector is set to be (0, 0), the light wave experiences normal diffraction and beam size is broadened. When the wave vector matches the point where Dy=0, the diffraction in the y-axis is obviously suppressed. To totally restrain the beam diffraction, the wave vector is set to be at the point where Dx=Dy=0. There are six intersections on the contour lines of Dx=0 and Dy=0, and these intersections are named non-diffraction points.The refraction of light can be also controlled by adjusting the input wave vector. When the wave vector is located on the contours of Δy=0, light wave propagates along the x-axis, without shifting along the y-axis. To excite the negative refractions, we need to match the input light wave to the eigen modes of the lattice, and adjust the wave vector to the negative refraction regions. We set the input wave vector to be kx > 0 and ky > 0, so that the beam would be output in the first quadrant of the coordinate if refracted normally. The eigen modes are approximated by multi-wave superposition, and the wave vector is adjusted to different refraction regions. From the numerical results of the light propagations, it is clearly seen that the propagations of a good portion of light energy follow the preconceived negative refractions, and output field is in the fourth, third, second, and third quadrant, respectively. Notably, the light waves generated by multi-wave superposition not only contain the eigen modes we need, but also include other modes. As a result, there are also energy outputs arising from the undesired modes in the other quadrants.The above conclusions are expected to provide a reference for the optical mechanisms of graphene-like optical phenomena in honeycomb photonic lattices.
      Corresponding author: Zhao Jian-Lin, jlzhao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675168, 11634010) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630125).
    [1]

    Eisenberg H S, Silberberg Y S 2000 Phys. Rev. Lett. 85 1863

    [2]

    Pertsch T, Zentgraf T, Peschel U, Bräuer A, Lederer F 2002 Phys. Rev. Lett. 88 093901

    [3]

    Rosberg C R, Neshev D N, Sukhorukov A A, Kivshar Y S, Krolikowski W 2005 Opt. Lett. 30 2293

    [4]

    Liu S, Zhang P, Xiao F J, Yang D X, Zhao J L 2009 Sci. China G 52 747

    [5]

    Zhang P, Liu S, Zhao J L, Lou C B, Xu J J, Chen Z G 2008 Opt. Lett. 33 878

    [6]

    Liu S, Hu Y, Zhang P, Gan X T, Xiao F J, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2011 Opt. Lett. 36 1167

    [7]

    Zhang P, Lou C B, Liu S, Zhao J L, Xu J J, Chen Z G 2010 Opt. Lett. 35 892

    [8]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Opt. Lett. 37 2184

    [9]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Appl. Phys. Lett. 100 061907

    [10]

    Yeh P, Yariv A, Hong C 1977 J. Opt. Soc. Am. 67 423

    [11]

    Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Pertsch T, Peschel U, Lederer F 2006 Phys. Rev. Lett. 96 053903

    [12]

    Liu S, Rao B J, Wang M R, Zhang P, Xiao F J, Gan X T, Zhao J L 2017 Opt. Express 25 7475

    [13]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52

    [14]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [15]

    Bahat-Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [16]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [17]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A 2014 Nat. Mater. 13 57

    [18]

    Rechtsman M C, Zeuner J M, Tnnermann A, Nolte S, Segev M, Szameit A 2013 Nat. Photon. 7 153

    [19]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [20]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Xu J, Ablowitz M, Efremidis N K, Chen Z 2015 Nat. Commun. 6 6272

    [21]

    Song D, Liu S, Paltoglou V, Gallardo D, Tang L, Zhao J, Xu J, Efremidis N K, Chen Z 2015 D Mater. 2 034007

    [22]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [23]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

  • [1]

    Eisenberg H S, Silberberg Y S 2000 Phys. Rev. Lett. 85 1863

    [2]

    Pertsch T, Zentgraf T, Peschel U, Bräuer A, Lederer F 2002 Phys. Rev. Lett. 88 093901

    [3]

    Rosberg C R, Neshev D N, Sukhorukov A A, Kivshar Y S, Krolikowski W 2005 Opt. Lett. 30 2293

    [4]

    Liu S, Zhang P, Xiao F J, Yang D X, Zhao J L 2009 Sci. China G 52 747

    [5]

    Zhang P, Liu S, Zhao J L, Lou C B, Xu J J, Chen Z G 2008 Opt. Lett. 33 878

    [6]

    Liu S, Hu Y, Zhang P, Gan X T, Xiao F J, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2011 Opt. Lett. 36 1167

    [7]

    Zhang P, Lou C B, Liu S, Zhao J L, Xu J J, Chen Z G 2010 Opt. Lett. 35 892

    [8]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Opt. Lett. 37 2184

    [9]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Appl. Phys. Lett. 100 061907

    [10]

    Yeh P, Yariv A, Hong C 1977 J. Opt. Soc. Am. 67 423

    [11]

    Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Pertsch T, Peschel U, Lederer F 2006 Phys. Rev. Lett. 96 053903

    [12]

    Liu S, Rao B J, Wang M R, Zhang P, Xiao F J, Gan X T, Zhao J L 2017 Opt. Express 25 7475

    [13]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52

    [14]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [15]

    Bahat-Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [16]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [17]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A 2014 Nat. Mater. 13 57

    [18]

    Rechtsman M C, Zeuner J M, Tnnermann A, Nolte S, Segev M, Szameit A 2013 Nat. Photon. 7 153

    [19]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [20]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Xu J, Ablowitz M, Efremidis N K, Chen Z 2015 Nat. Commun. 6 6272

    [21]

    Song D, Liu S, Paltoglou V, Gallardo D, Tang L, Zhao J, Xu J, Efremidis N K, Chen Z 2015 D Mater. 2 034007

    [22]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [23]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

  • [1] Zhi Wen-Qiang, Fei Hong-Ming, Han Yu-Hui, Wu Min, Zhang Ming-Da, Liu Xin, Cao Bin-Zhao, Yang Yi-Biao. Unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] Study on unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211299
    [3] Wu Ji-Jiang, Gao Jin-Xia. Photonic bandgap properties of one-dimensional superconducting photonic crystals containing metamaterials. Acta Physica Sinica, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [4] Yu Guo-Jun, Pu Sheng-Li, Wang-Xiang, Ji Hong-Zhu. Tunable negative refraction properties of photonic crystals based on silicon columns arranged in magnetic liquids. Acta Physica Sinica, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [5] Li Yan-Feng, Hu Xiao-Kun, Wang Ai-Min. Design of high-index broken-ring-based all-solid photonic bandgap fibers. Acta Physica Sinica, 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [6] Zhang Zheng-Ren, Long Zheng-Wen, Yuan Yu-Qun, Diao Xin-Feng. The band structure of symmetrical structured one-dimensional photonic crystal with single-negative materials. Acta Physica Sinica, 2010, 59(1): 587-591. doi: 10.7498/aps.59.587
    [7] Wang Sha, Yang Zhi-An. Nonlinear Landau-Zener tunneling in two-dimensional photonic lattices. Acta Physica Sinica, 2009, 58(2): 729-733. doi: 10.7498/aps.58.729
    [8] Wang Sha, Yang Zhi-An. Two-level model of light propagation in photonic lattices and nonlinear Landau-Zener tunneling. Acta Physica Sinica, 2009, 58(6): 3699-3706. doi: 10.7498/aps.58.3699
    [9] Kong Ling-Kai, Zheng Zhi-Qiang, Feng Zhuo-Hong, Li Xiao-Yan, Jiang Cui-Hua, Ming Hai. Focusing property of two-dimensional photonic crystals with ring-shaped air holes. Acta Physica Sinica, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [10] Mi Yan, Hou Lan-Tian, Zhou Gui-Yao, Wang Kang, Chen Chao, Gao Fei, Liu Bo-Wen, Hu Ming-Lie. Measurement and numerical simulation of the bandgap in hollow-core photonic crystal fibers. Acta Physica Sinica, 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [11] Yang Li-Sen, Chen Yu-He, Lu Gai-Ling, Liu Si-Min. Generation of spacial second-harmonic in photorefrective photonic lattice. Acta Physica Sinica, 2007, 56(7): 3966-3971. doi: 10.7498/aps.56.3966
    [12] Zhang Bo, Wang Zhi. Antireflection coating for two-dimensional air hole-type photonic crystal negative refraction slab lens. Acta Physica Sinica, 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [13] Gu Jian-Zhong, Lin Shui-Yang, Wang Chuang, Yu Xiao-Jing, Sun Xiao-Wei. A compensated compact microstrip resonant cell with photonic band-gap performance. Acta Physica Sinica, 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [14] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [15] Xiang Yuan-Jiang, Wen Shuang-Chun, Tang Kang-Song. Photon tunneling in a frustrated-total-internal-reflection structure composed of a single negative material. Acta Physica Sinica, 2006, 55(6): 2714-2719. doi: 10.7498/aps.55.2714
    [16] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Lu Wei. Fabrication and photonic band gap property of the two-dimensional square lattice based on silicon. Acta Physica Sinica, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [18] Zhang Hai-Tao, Gong Ma-Li, Wang Dong-Sheng, Li Wei, Zhao Da-Zun. Applications of group theory to calculations of photonic band gap. Acta Physica Sinica, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [19] HE YONG-JUN, SU HUI-MIN, TANG FANG-QIONG, DONG PENG, WANG HE-ZHOU. COLLOIDAL AMORPHOUS CRYSTAL WITH A QUASI-COMPLETE PHOTONIC BAND GAP . Acta Physica Sinica, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] WANG HUI, LI YONG-PING. AN EIGEN MATRIX METHOD FOR OBTAINING THE BAND STRUCTURE OF PHOTONIC CRYSTALS. Acta Physica Sinica, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
Metrics
  • Abstract views:  5551
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2017
  • Accepted Date:  08 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map