-
Optical chaos has conducted in-depth investigation and attracted widespread attention in recent years,owing to its important applications in chaos-based secure communication,fast physical random bit generation,chaotic laser radar, lidar,chaotic optical time domain reflectometer,distance measurement,and optical fiber sensor.The key to these applications is a compact and broadband chaotic light source,because the integrated circuits have an advantage over those setups composed of discrete components in some unique virtues such as smaller size,lower cost,better stability, and better reproducibility via mass production.In order to combine the advantages of the chaotic application and integrated circuits,the integrated chaotic external-cavity semiconductor laser has aroused great interest.Note that, the integrated chaotic external-cavity semiconductor laser can work in both short-and long-cavity mechanisms,which depends on the laser relaxation oscillation frequency.The output of chaotic external cavity semiconductor laser has obvious relaxation oscillation characteristic.When the relaxation oscillation frequency is less than the external-cavity oscillation frequency,the external-cavity semiconductor laser works in short-cavity mechanism.Otherwise,it works in long-cavity mechanism.In this paper,we comparatively analyze the effects of fine-tuning cavity length on the effective bandwidth of the integrated external-cavity semiconductor laser under both short-and long-cavity mechanisms.First,we comparatively analyze the effects of fine-tuning cavity length and external-cavity feedback rate on the effective bandwidth of the integrated external-cavity semiconductor laser when relaxation oscillation frequency is 5.6 GHz. At the same time,the injection current and carrier lifetime are adjusted to observably increase the relaxation oscillation frequency.Finally,we comparatively analyze the effects of fine-tuning cavity length and external-cavity feedback rate on the effective bandwidth of the integrated external-cavity semiconductor laser when relaxation oscillation frequency is 40 GHz.Results show that for short-cavity mechanism,the chaotic output is not stable:0.1-mm deviation will lead to the conversion from chaotic state into non-chaotic state.By contrast,for the long-cavity mechanism,the chaotic output is more stable and has a larger chaotic area.It proves that the long-cavity mechanism is more feasible and conducive to the continuous achievement of a broadband chaotic laser and broadband continuous chaotic region.According to this feature,we realize the transition from short to long cavity regime by adjusting the injection current and carrier lifetime to substantially increase the relaxation oscillation frequency at the same time.We realize the transition from short to long cavity regime in a cavity length range from 2 mm to 10 mm,and then analyze the influences of the external cavity rate and external cavity length on the spectrum bandwidth of the external cavity semiconductor laser.The results show that under the long cavity mechanism,it is more conducive to the achievement of a broadband continuous chaotic region in a cavity lengt range from 4 mm to 20 mm.Considering the refractive index of integrated material,the external-cavity length for long-cavity mechanism can be shortened to a range from 1 mm to 2 mm.This length fully conforms to the butterfly packaging size.
-
Keywords:
- chaos /
- integrated semiconductor lasers /
- optical feedback /
- relaxation oscillation frequency
[1] Sciamanna M, Shore K A 2015 Nature Photon. 9 151
[2] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[3] Soriano M C, García-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421
[4] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728
[5] Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102
[6] Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815
[7] Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991
[8] Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C 2012 J. Lightw. Technol. 30 3420
[9] Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636
[10] Erzgräber H, Krauskopf B, Lenstra D, Fischer A, Vemuri G 2006 Phys. Rev. E 73 055201
[11] Toomey J P, Kane D M, McMahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754
[12] Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641
[13] Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Topics Quantum Electron. 4 772
[14] Hofstetter D, Maisenhölder B, Zappe H P 1998 IEEE J. Sel. Topics Quantum Electron. 4 794
[15] Bauer S, Brox O, Kreissl J, Sartorius B 2004 Phys. Rev. E 69 016206
[16] Ushakov O, Bauer S, Brox O, Wnsche H J, Henneberger F 2004 Phys. Rev. Lett. 92 043902
[17] Yousefi M, Barbarin Y, Beri S, Bente E A, Smit M K, Nötzel R, Lenstra D 2007 Phys. Rev. Lett. 98 044101
[18] Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101
[19] Tronciu V Z, Ermakov Y, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747
[20] Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803
[21] Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Opt. Express 19 5713
[22] Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358
[23] Liu D, Sun C, Xiong B, Luo Y 2014 Opt. Express 22 5614
[24] Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightw. Technol. 32 3595
[25] Yee D S, Leem Y A, Kim S B, Kim D C, Park K H, Kim S T, Kim B G 2004 Opt. Lett. 29 2243
[26] Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763
[27] Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803
[28] Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K, Davis P 2014 Opt. Express 22 11727
[29] Wnsche H, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I 2005 Phys. Rev. Lett. 94 163901
[30] Pérez T, Radziunas M, Wnsche H J, Mirasso C R, Henneberger F 2006 IEEE Photon. Technol. Lett. 18 2135
[31] Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D 2010 Opt. Express 18 5188
[32] Monfils I, Cartledge J C 2009 J. Lightw. Technol. 27 619
[33] Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y 2010 J. Lightw. Technol. 28 2521
[34] Sunada S, Shinohara S, Fukushima T, Harayama T 2016 Phys. Rev. Lett. 116 203903
[35] Uchida A 2012 Applications of Nonlinear Dynamics and Synchronization
[36] Bjerkan L, Royset A, Hafsker L, Myhre D 1996 J. Lightw. Technol. 14 839
[37] Wen Y F 2012 Ph. D. Dissertation (McMaster University)
-
[1] Sciamanna M, Shore K A 2015 Nature Photon. 9 151
[2] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[3] Soriano M C, García-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421
[4] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728
[5] Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102
[6] Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815
[7] Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991
[8] Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C 2012 J. Lightw. Technol. 30 3420
[9] Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636
[10] Erzgräber H, Krauskopf B, Lenstra D, Fischer A, Vemuri G 2006 Phys. Rev. E 73 055201
[11] Toomey J P, Kane D M, McMahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754
[12] Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641
[13] Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Topics Quantum Electron. 4 772
[14] Hofstetter D, Maisenhölder B, Zappe H P 1998 IEEE J. Sel. Topics Quantum Electron. 4 794
[15] Bauer S, Brox O, Kreissl J, Sartorius B 2004 Phys. Rev. E 69 016206
[16] Ushakov O, Bauer S, Brox O, Wnsche H J, Henneberger F 2004 Phys. Rev. Lett. 92 043902
[17] Yousefi M, Barbarin Y, Beri S, Bente E A, Smit M K, Nötzel R, Lenstra D 2007 Phys. Rev. Lett. 98 044101
[18] Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101
[19] Tronciu V Z, Ermakov Y, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747
[20] Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803
[21] Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Opt. Express 19 5713
[22] Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358
[23] Liu D, Sun C, Xiong B, Luo Y 2014 Opt. Express 22 5614
[24] Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightw. Technol. 32 3595
[25] Yee D S, Leem Y A, Kim S B, Kim D C, Park K H, Kim S T, Kim B G 2004 Opt. Lett. 29 2243
[26] Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763
[27] Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803
[28] Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K, Davis P 2014 Opt. Express 22 11727
[29] Wnsche H, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I 2005 Phys. Rev. Lett. 94 163901
[30] Pérez T, Radziunas M, Wnsche H J, Mirasso C R, Henneberger F 2006 IEEE Photon. Technol. Lett. 18 2135
[31] Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D 2010 Opt. Express 18 5188
[32] Monfils I, Cartledge J C 2009 J. Lightw. Technol. 27 619
[33] Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y 2010 J. Lightw. Technol. 28 2521
[34] Sunada S, Shinohara S, Fukushima T, Harayama T 2016 Phys. Rev. Lett. 116 203903
[35] Uchida A 2012 Applications of Nonlinear Dynamics and Synchronization
[36] Bjerkan L, Royset A, Hafsker L, Myhre D 1996 J. Lightw. Technol. 14 839
[37] Wen Y F 2012 Ph. D. Dissertation (McMaster University)
Catalog
Metrics
- Abstract views: 6795
- PDF Downloads: 158
- Cited By: 0