Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal entanglement of Ising-Heisenberg chain with triangular plaquettes

Zheng Yi-Dan Mao Zhu Zhou Bin

Citation:

Thermal entanglement of Ising-Heisenberg chain with triangular plaquettes

Zheng Yi-Dan, Mao Zhu, Zhou Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum entanglement as an important resource in quantum computation and quantum information has attracted much attention in recent decades. The effect of temperature should be viewed as an external control in the preparation of entangled state, and the thermal entanglement of the Heisenberg spin model has been discussed intensively. Due to the quantum fluctuation and thermal effect, there have been found some interesting physical phenomena in the geometrically frustrated spin system at zero or a certain temperature. Meanwhile, the lattice spin system with triangular plaquettes is regarded as a general structure of magnetic material. In this paper, we theoretically analyze the thermal entanglement of Ising-Heisenberg chain with triangular plaquettes. The transfer matrix method is used to calculate numerically the thermal entanglement in the infinite Ising-Heisenberg chain. We consider three kinds of Heisenberg spin interaction models (i.e., XXX-Heisenberg model, XXZ-Heisenberg model and XYZ-Heisenberg model), and discuss the effects of magnetic field and temperature on the three models, respectively. The results show that temperature and magnetic field have important effects on the three models. Meanwhile, it is found that the XXX-Heisenberg model is more sensitive than the anisotropy model (i.e., XXZ-Heisenberg model or XYZ-Heisenberg model) when temperature rises. A certain magnetic field would promote the generation of the quantum entangled states in all the three cases when the thermal fluctuation suppresses the quantum effects of the systems. In addition, it is found that the entanglement of XYZ-Heisenberg model is more robust than the others at a higher temperature, especially when the anisotropy along the z axis is greater than that along the y axis. We also plot the variations of the critical temperature with magnetic field in the three models. From the critical temperature-magnetic field phase diagrams, we can obtain the range of parameters in which the pairwise entanglement of the system exists. We also find that the entanglement revival behaviors may occur in a specific range of the parameters. Therefore, the properties of the thermal entanglement of Ising-Heisenberg chain with triangular plaquettes can be controlled and enhanced by choosing and using suitable parameters of magnetic field and temperature.
      Corresponding author: Mao Zhu, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn ; Zhou Bin, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
    [1]

    Misguich G, Lhuillier C 2004 Frustrated Spin Systems (Singapore:World Scientific) p229

    [2]

    Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K 2007 Nature Mater. 6 853

    [3]

    Moessner R, Sondhi S L 2001 Phys. Rev. B 63 224401

    [4]

    Schmidt B, Shannon N, Thalmeier P 2006 J. Phys.:Conf. Ser. 51 207

    [5]

    Zhitomirsky M E, Honecker A, Petrenko O A 2000 Phys. Rev. Lett. 85 3269

    [6]

    Lee S, Lee K C 1998 Phys. Rev. B 57 8472

    [7]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [8]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [9]

    Kubo K 1993 Phys. Rev. B 48 10552

    [10]

    Nakamura T, Saika Y 1995 J. Phys. Soc. Jpn. 64 695

    [11]

    Nakamura T, Kubo K 1996 Phys. Rev. B 53 6393

    [12]

    Chen S, Bttner H, Voit J 2003 Phys. Rev. B 67 054412

    [13]

    Guo Y P, Liu Z Q, Xu Y L, Kong X M 2016 Phys. Rev. E 93 052151

    [14]

    Collins M F, Petrenko O A 1997 Can. J. Phys. 75 605

    [15]

    Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P 1997 Phys. Rev. B 56 2521

    [16]

    Waldtmann C, Everts H U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L 1998 Eur. Phys. J. B 2 501

    [17]

    Mila F 1998 Phys. Rev. Lett. 81 2356

    [18]

    Mambrini M, Trébosc J, Mila F 1999 Phys. Rev. B 59 13806

    [19]

    Totsuka K, Mikeska H J 2002 Phys. Rev. B 66 054435

    [20]

    Rojas O, Alcaraz F C 2003 Phys. Rev. B 67 174401

    [21]

    Rojas O, Rojas M, Ananikian N S, de Souza S M 2012 Phys. Rev. A 86 042330

    [22]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V V 2015 Solid State Commun. 224 15

    [23]

    Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press) p89

    [24]

    Hida K 1994 J. Phys. Soc. Jpn. 63 2359

    [25]

    Ohanyan V, Ananikian N S 2003 Phys. Lett. A 307 76

    [26]

    Strečka J, Hagiwara M, Jaščur M, Minami K 2004 Czech. J. Phys. 54 583

    [27]

    Strečka J, Jaščur M, Hagiwara M, Minami K, Narumi Y, Kindo K 2005 Phys. Rev. B 72 024459

    [28]

    Antonosyan D, Bellucci S, Ohanyan V 2009 Phys. Rev. B 79 014432

    [29]

    Ohanyan V 2010 Phys. Atom. Nucl. 73 494

    [30]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [31]

    Wang X 2001 Phys. Rev. A 64 012313

    [32]

    Wang X 2001 Phys. Lett. A 281 101

    [33]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [34]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [35]

    Gunlycke D, Kendon V M, Vedral V, Bose S 2001 Phys. Rev. A 64 042302

    [36]

    Terzis A F, Paspalakis E 2004 Phys. Lett. A 333 438

    [37]

    Canosa N, Rossignoli R 2004 Phys. Rev. A 69 052306

    [38]

    Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567

    [39]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [40]

    Asoudeh M, Karimipour V 2005 Phys. Rev. A 71 022308

    [41]

    Cao M, Zhu S 2005 Phys. Rev. A 71 034311

    [42]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [43]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [44]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [45]

    Chen S R, Xia Y J, Man Z X 2010 Chin. Phys. B 19 050304

    [46]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [47]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese)[卢鹏, 王顺金 2009 58 5955]

    [48]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)[张英丽, 周斌 2011 60 120301]

    [49]

    Ananikian N S, Ananikyan L N, Chakhmakhchyan L A, Rojas O 2012 J. Phys.:Condens. Matter 24 256001

    [50]

    Torrico J, Rojas M, de Souza S M, Rojas O, Ananikian N S 2014 Europhys. Lett. 108 50007

    [51]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V 2015 Solid State Commun. 203 5

    [52]

    Qiao J, Zhou B 2015 Chin. Phys. B 24 110306

    [53]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [54]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [55]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1]

    Misguich G, Lhuillier C 2004 Frustrated Spin Systems (Singapore:World Scientific) p229

    [2]

    Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K 2007 Nature Mater. 6 853

    [3]

    Moessner R, Sondhi S L 2001 Phys. Rev. B 63 224401

    [4]

    Schmidt B, Shannon N, Thalmeier P 2006 J. Phys.:Conf. Ser. 51 207

    [5]

    Zhitomirsky M E, Honecker A, Petrenko O A 2000 Phys. Rev. Lett. 85 3269

    [6]

    Lee S, Lee K C 1998 Phys. Rev. B 57 8472

    [7]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [8]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [9]

    Kubo K 1993 Phys. Rev. B 48 10552

    [10]

    Nakamura T, Saika Y 1995 J. Phys. Soc. Jpn. 64 695

    [11]

    Nakamura T, Kubo K 1996 Phys. Rev. B 53 6393

    [12]

    Chen S, Bttner H, Voit J 2003 Phys. Rev. B 67 054412

    [13]

    Guo Y P, Liu Z Q, Xu Y L, Kong X M 2016 Phys. Rev. E 93 052151

    [14]

    Collins M F, Petrenko O A 1997 Can. J. Phys. 75 605

    [15]

    Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P 1997 Phys. Rev. B 56 2521

    [16]

    Waldtmann C, Everts H U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L 1998 Eur. Phys. J. B 2 501

    [17]

    Mila F 1998 Phys. Rev. Lett. 81 2356

    [18]

    Mambrini M, Trébosc J, Mila F 1999 Phys. Rev. B 59 13806

    [19]

    Totsuka K, Mikeska H J 2002 Phys. Rev. B 66 054435

    [20]

    Rojas O, Alcaraz F C 2003 Phys. Rev. B 67 174401

    [21]

    Rojas O, Rojas M, Ananikian N S, de Souza S M 2012 Phys. Rev. A 86 042330

    [22]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V V 2015 Solid State Commun. 224 15

    [23]

    Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press) p89

    [24]

    Hida K 1994 J. Phys. Soc. Jpn. 63 2359

    [25]

    Ohanyan V, Ananikian N S 2003 Phys. Lett. A 307 76

    [26]

    Strečka J, Hagiwara M, Jaščur M, Minami K 2004 Czech. J. Phys. 54 583

    [27]

    Strečka J, Jaščur M, Hagiwara M, Minami K, Narumi Y, Kindo K 2005 Phys. Rev. B 72 024459

    [28]

    Antonosyan D, Bellucci S, Ohanyan V 2009 Phys. Rev. B 79 014432

    [29]

    Ohanyan V 2010 Phys. Atom. Nucl. 73 494

    [30]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [31]

    Wang X 2001 Phys. Rev. A 64 012313

    [32]

    Wang X 2001 Phys. Lett. A 281 101

    [33]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [34]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [35]

    Gunlycke D, Kendon V M, Vedral V, Bose S 2001 Phys. Rev. A 64 042302

    [36]

    Terzis A F, Paspalakis E 2004 Phys. Lett. A 333 438

    [37]

    Canosa N, Rossignoli R 2004 Phys. Rev. A 69 052306

    [38]

    Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567

    [39]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [40]

    Asoudeh M, Karimipour V 2005 Phys. Rev. A 71 022308

    [41]

    Cao M, Zhu S 2005 Phys. Rev. A 71 034311

    [42]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [43]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [44]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [45]

    Chen S R, Xia Y J, Man Z X 2010 Chin. Phys. B 19 050304

    [46]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [47]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese)[卢鹏, 王顺金 2009 58 5955]

    [48]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)[张英丽, 周斌 2011 60 120301]

    [49]

    Ananikian N S, Ananikyan L N, Chakhmakhchyan L A, Rojas O 2012 J. Phys.:Condens. Matter 24 256001

    [50]

    Torrico J, Rojas M, de Souza S M, Rojas O, Ananikian N S 2014 Europhys. Lett. 108 50007

    [51]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V 2015 Solid State Commun. 203 5

    [52]

    Qiao J, Zhou B 2015 Chin. Phys. B 24 110306

    [53]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [54]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [55]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [2] Li Xiang,  Wu De-Wei,  Miao Qiang,  Zhu Hao-Nan,  Wei Tian-Li. Characteristics and expressions of entangled microwave signals. Acta Physica Sinica, 2018, 67(24): 240301. doi: 10.7498/aps.67.20181595
    [3] Yang Ying, Cao Huai-Xin. General method of constructing entanglement witness. Acta Physica Sinica, 2018, 67(7): 070303. doi: 10.7498/aps.67.20172697
    [4] Zhu Hao-Nan, Wu De-Wei, Li Xiang, Wang Xiang-Lin, Miao Qiang, Fang Guan. Path-entanglement microwave signals detecting method based on entanglement witness. Acta Physica Sinica, 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [5] Liu Gui-Yan, Mao Zhu, Zhou Bin. Thermal entanglement in a five-qubit XXZ Heisenberg spin chain with the next nearest neighboring interaction. Acta Physica Sinica, 2018, 67(2): 020301. doi: 10.7498/aps.67.20171641
    [6] Fan Hong-Rui, Yuan Ya-Li, Hou Xi-Wen. Thermal geometric discords in a two-qubit Heisenberg XY model. Acta Physica Sinica, 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [7] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [8] Zheng Yi-Dan, Zhou Bin. Tripartite entanglement of {Cu3} single molecular magnet with magnetic field in thermal equilibrium. Acta Physica Sinica, 2016, 65(12): 120301. doi: 10.7498/aps.65.120301
    [9] Wang Qi, Wang Xiao-Qian. Properties of entanglement in one-dimensional Ising model with a tilted magnetic field. Acta Physica Sinica, 2013, 62(22): 220301. doi: 10.7498/aps.62.220301
    [10] Wang Lu-Shun, Jiang Hui, Kong Xiang-Mu. Thermal entanglement of mixed spin XY systems. Acta Physica Sinica, 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [11] Jiang Chun-Lei, Liu Xiao-Juan, Liu Ming-Wei, Wang Yan-Hui, Peng Zhao-Hui. Properties and coherence-controlling of entanglement of a two-qubit Heisenberg XY chain with intrinsic decoherence. Acta Physica Sinica, 2012, 61(17): 170302. doi: 10.7498/aps.61.170302
    [12] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [13] Zhang Ying-Li, Zhou Bin. Thermal entanglement in the four-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [14] Wang Yan-Hui, Xia Yun-Jie. Pairwise entanglement in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [15] Li Long-Long, Xu Wen, Zeng Zhi. Formalism of the transfer matrix and its application to Ⅲ/Ⅴ semicondutor quantum well systems. Acta Physica Sinica, 2009, 58(13): 266-S271. doi: 10.7498/aps.58.266
    [16] Yang Jian, Ren Min, Yu Ya-Fei, Zhang Zhi-Ming, Liu Song-Hao. Entanglement transfer via cross-Kerr nonlinearity. Acta Physica Sinica, 2008, 57(2): 887-891. doi: 10.7498/aps.57.887
    [17] Qin Meng, Tian Dong-Ping, Tao Ying-Juan. The effect of impurity on the thermal entanglement in three-qutrit spin-1 Heisenberg XXX chain. Acta Physica Sinica, 2008, 57(9): 5395-5399. doi: 10.7498/aps.57.5395
    [18] Xiang Shao-Hua, Yang Xiong, Song Ke-Hui. Time evolution of two-atom entanglement and thermal entanglement in a generalized Jaynes-Cummings model. Acta Physica Sinica, 2004, 53(5): 1289-1292. doi: 10.7498/aps.53.1289
    [19] Zhang Tao, Xi Xiao-Qiang, Yue Rui-Hong. The effect of impurity on the entanglement between the normal lattice in three-qubit Heisenberg XX chain. Acta Physica Sinica, 2004, 53(8): 2755-2760. doi: 10.7498/aps.53.2755
    [20] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
Metrics
  • Abstract views:  6563
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  17 August 2017
  • Accepted Date:  22 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map