Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tripartite entanglement of {Cu3} single molecular magnet with magnetic field in thermal equilibrium

Zheng Yi-Dan Zhou Bin

Citation:

Tripartite entanglement of {Cu3} single molecular magnet with magnetic field in thermal equilibrium

Zheng Yi-Dan, Zhou Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum entanglement is one of the most fundamental properties of quantum mechanics. Because of the nonlocality, quantum entanglement is widely used in quantum computation and quantum information. Considering the fact that thermal fluctuation suppresses quantum effects, the concept of thermal entanglement is introduced to refer to the idea that the effect of temperature should be viewed as external control in the preparation of entangled state. It has been found that nanoscale single molecular magnet has a novel quantum effect at low temperature. Furthermore, single-molecular magnet is viewed as a promising candidate for realizing encoding and manipulation of quantum information. Na9[Cu3Na3(H2O)9(-AsW9O33)2]26H2O (denoted as {Cu3} for convenience) is one of the typical representatives of nanoscale single molecular magnets. In this paper, we will theoretically analyze the properties of tripartite entanglement in {Cu3} with an external magnetic field in thermal equilibrium. The tripartite negativity is used to characterize the tripartite entanglement. The tripartite negativity of {Cu3} single molecular magnet is calculated numerically by using the equivalent spin model and experimental fitting parameters. We consider the magnetic fields along the vertical and the parallel directions of triangular spin ring, respectively, and the case with a tilted magnetic field is also discussed in this paper. It is shown that the magnitude and direction of magnetic field, and temperature have importance effects on the tripartite negativity of the system. It is found that the larger extra strong magnetic field will inhibit the generation of the quantum state of tripartite entanglement at higher temperature. In addition, compared with the magnetic field along the parallel direction of triangular spin ring and the tilted magnetic field, the magnetic field along the vertical direction of triangular spin ring obtains larger values of tripartite negativity under the same temperature and magnetic field. We also plot the variations of the critical temperature with the magnetic field along different directions, and from the critical temperature-magnetic field phase diagrams one can obtain the range of parameters in which the tripartite entanglement of the system exists. We also find that entanglement revival behaviors may occur in the specific range of parameters. Therefore, the properties of the tripartite entanglement in the {Cu3} triangular spin ring can be controlled and enhanced by choosing appropriate magnitude and direction of the magnetic field and temperature.
      Corresponding author: Zhou Bin, binzhou@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
    [1]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [2]

    Schumacher B 1995 Phys. Rev. A 51 2738

    [3]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger Z 1996 Phys. Rev. Lett. 76 4656

    [4]

    Bennett C H 1993 Phys. Rev. Lett. 70 1895

    [5]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [7]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S S 1996 Phys. Rev. Lett. 77 2818

    [8]

    Wang X G 2001 Phys. Rev. A 64 012313

    [9]

    Wang X G 2001 Phys. Lett. A 281 101

    [10]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张英丽, 周斌 2011 60 120301]

    [11]

    Cao M, Zhu S Q 2005 Phys. Rev. A 71 034311

    [12]

    Wang X G, Fu H C, Solomon A I 2001 J. Phys. A 34 11307

    [13]

    Hou J M, Du L, Ding J Y, Zhang W X 2010 Chin. Phys. B 19 110313

    [14]

    Ma X S, Qiao Y, Cheng M T, Liu X D 2014 Quantum Inf. Process. 13 1879

    [15]

    Xu S, Song X K, Ye L 2014 Quantum Inf. Process. 13 1013

    [16]

    Guo K T, Liang M C, Xu H Y, Zhu C B 2010 J. Phys. A 43 505301

    [17]

    Sun Z, Wang X G, Hu A Z, Li Y Q 2006 Physica A 370 483

    [18]

    Sabn C, Garca-Alcaine G 2008 Eur. Phys. J. D 48 435

    [19]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

    [20]

    Yu C S, Song H S 2004 Phys. Lett. A 330 377

    [21]

    Meyer D, Wallach N R 2002 J. Math. Phys. 43 4273

    [22]

    Brennen G K 2003 Quantum Inf. Comput. 3 619

    [23]

    Love P J, van den Brink A M, Smirnov A Y, Amin M H S, Grajcar M, ll'ichev E, lzmalkov A, Zagoskin A M 2007 Quantum Inf. Process. 6 187

    [24]

    Ma X S, Zhao G X, Zhang J Y, Wang A M 2013 Quantum Inf. Process. 12 321

    [25]

    Anz F, Militello B, Messina A 2010 J. Phys. B 43 205501

    [26]

    Guo Y N, Fang M F, Zhang S Y, Liu X 2015 Phys. Scr. 90 035103

    [27]

    Feng L J, Zhang Y J, Zhang L, Xia Y J 2015 Chin. Phys. B 24 110305

    [28]

    Li Y J, Liu J M 2014 Acta Phys. Sin. 63 200302 (in Chinese) [李艳杰, 刘金明 2014 63 200302]

    [29]

    Cai J T, Abliz A 2013 Phys. A 392 2607

    [30]

    Weinstein Y S 2009 Phys. Rev. A 79 012318

    [31]

    Buscemi F, Bordone P 2011 Phys. Rev. A 84 022303

    [32]

    Friedman J R, Sarachik M P, Tejada J, Ziolo R 1996 Phys. Rev. Lett. 76 3830

    [33]

    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B 1996 Nature 383 145

    [34]

    Wernsdorfer W, Sessoli R 1999 Science 284 133

    [35]

    Ardavan A, Rival O, Morton J J L, Blundell S J, Tyryshkin A M, Timco G A, Winpenny R E P 2007 Phys. Rev. Lett. 98 057201

    [36]

    Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W, Ravot D 2004 Inorg. Chem. 43 2308

    [37]

    Stowe A C, Nellutla S, Dalal N S, Kortz U 2004 Eur. J. Inorg. Chem. 2004 3792

    [38]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [39]

    Islam M F, Nossa J F, Canali C M 2010 Phys. Rev. B 82 155446

    [40]

    Mousolou V A, Canali C M, Sjqvist E 2015 arXiv:1512.01636v1[quant-ph]

    [41]

    Li J Q, Cheng Z, Zhou B 2013 Acta Phys. Sin. 62 190302 (in Chinese) [李纪强, 成志, 周斌 2013 62 190302]

    [42]

    Li J Q, Zhou B 2014 Chin. Phys. B 23 070302

    [43]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

  • [1]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [2]

    Schumacher B 1995 Phys. Rev. A 51 2738

    [3]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger Z 1996 Phys. Rev. Lett. 76 4656

    [4]

    Bennett C H 1993 Phys. Rev. Lett. 70 1895

    [5]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [7]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S S 1996 Phys. Rev. Lett. 77 2818

    [8]

    Wang X G 2001 Phys. Rev. A 64 012313

    [9]

    Wang X G 2001 Phys. Lett. A 281 101

    [10]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张英丽, 周斌 2011 60 120301]

    [11]

    Cao M, Zhu S Q 2005 Phys. Rev. A 71 034311

    [12]

    Wang X G, Fu H C, Solomon A I 2001 J. Phys. A 34 11307

    [13]

    Hou J M, Du L, Ding J Y, Zhang W X 2010 Chin. Phys. B 19 110313

    [14]

    Ma X S, Qiao Y, Cheng M T, Liu X D 2014 Quantum Inf. Process. 13 1879

    [15]

    Xu S, Song X K, Ye L 2014 Quantum Inf. Process. 13 1013

    [16]

    Guo K T, Liang M C, Xu H Y, Zhu C B 2010 J. Phys. A 43 505301

    [17]

    Sun Z, Wang X G, Hu A Z, Li Y Q 2006 Physica A 370 483

    [18]

    Sabn C, Garca-Alcaine G 2008 Eur. Phys. J. D 48 435

    [19]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

    [20]

    Yu C S, Song H S 2004 Phys. Lett. A 330 377

    [21]

    Meyer D, Wallach N R 2002 J. Math. Phys. 43 4273

    [22]

    Brennen G K 2003 Quantum Inf. Comput. 3 619

    [23]

    Love P J, van den Brink A M, Smirnov A Y, Amin M H S, Grajcar M, ll'ichev E, lzmalkov A, Zagoskin A M 2007 Quantum Inf. Process. 6 187

    [24]

    Ma X S, Zhao G X, Zhang J Y, Wang A M 2013 Quantum Inf. Process. 12 321

    [25]

    Anz F, Militello B, Messina A 2010 J. Phys. B 43 205501

    [26]

    Guo Y N, Fang M F, Zhang S Y, Liu X 2015 Phys. Scr. 90 035103

    [27]

    Feng L J, Zhang Y J, Zhang L, Xia Y J 2015 Chin. Phys. B 24 110305

    [28]

    Li Y J, Liu J M 2014 Acta Phys. Sin. 63 200302 (in Chinese) [李艳杰, 刘金明 2014 63 200302]

    [29]

    Cai J T, Abliz A 2013 Phys. A 392 2607

    [30]

    Weinstein Y S 2009 Phys. Rev. A 79 012318

    [31]

    Buscemi F, Bordone P 2011 Phys. Rev. A 84 022303

    [32]

    Friedman J R, Sarachik M P, Tejada J, Ziolo R 1996 Phys. Rev. Lett. 76 3830

    [33]

    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B 1996 Nature 383 145

    [34]

    Wernsdorfer W, Sessoli R 1999 Science 284 133

    [35]

    Ardavan A, Rival O, Morton J J L, Blundell S J, Tyryshkin A M, Timco G A, Winpenny R E P 2007 Phys. Rev. Lett. 98 057201

    [36]

    Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W, Ravot D 2004 Inorg. Chem. 43 2308

    [37]

    Stowe A C, Nellutla S, Dalal N S, Kortz U 2004 Eur. J. Inorg. Chem. 2004 3792

    [38]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [39]

    Islam M F, Nossa J F, Canali C M 2010 Phys. Rev. B 82 155446

    [40]

    Mousolou V A, Canali C M, Sjqvist E 2015 arXiv:1512.01636v1[quant-ph]

    [41]

    Li J Q, Cheng Z, Zhou B 2013 Acta Phys. Sin. 62 190302 (in Chinese) [李纪强, 成志, 周斌 2013 62 190302]

    [42]

    Li J Q, Zhou B 2014 Chin. Phys. B 23 070302

    [43]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

  • [1] Mao Li-Jun, Zhang Yun-Bo. The dynamics of the bipartite and tripartite entanglement in the three-qubit Dicke model. Acta Physica Sinica, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [2] Liu Gui-Yan, Mao Zhu, Zhou Bin. Thermal entanglement in a five-qubit XXZ Heisenberg spin chain with the next nearest neighboring interaction. Acta Physica Sinica, 2018, 67(2): 020301. doi: 10.7498/aps.67.20171641
    [3] Zheng Yi-Dan, Mao Zhu, Zhou Bin. Thermal entanglement of Ising-Heisenberg chain with triangular plaquettes. Acta Physica Sinica, 2017, 66(23): 230304. doi: 10.7498/aps.66.230304
    [4] Liu Shi-You, Zheng Kai-Min, Jia Fang, Hu Li-Yun, Xie Fang-Sen. Entanglement of one- and two-mode combination squeezed thermal states and its application in quantum teleportation. Acta Physica Sinica, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [5] Li Ji-Qiang, Cheng Zhi, Zhou Bin. Thermal entanglement in a {Cu3} single molecular magnet in the magnetic field. Acta Physica Sinica, 2013, 62(19): 190302. doi: 10.7498/aps.62.190302
    [6] Lu Dao-Ming. The evolution of three-body entanglement in the system of atoms interacting with coupled cavities. Acta Physica Sinica, 2012, 61(18): 180301. doi: 10.7498/aps.61.180301
    [7] Ye Qian, Chen Qian-Fan, Fan Hong-Yi. Integral-form solution of the Caldeira-Leggett density operator equation obtained by virtue of thermo entangled state representation. Acta Physica Sinica, 2012, 61(21): 210301. doi: 10.7498/aps.61.210301
    [8] Hu Yao-Hua. Effect of the Stark shift on entanglement in a double Jaynes-Cummings model in thermal environment. Acta Physica Sinica, 2012, 61(16): 160304. doi: 10.7498/aps.61.160304
    [9] Wang Lu-Shun, Jiang Hui, Kong Xiang-Mu. Thermal entanglement of mixed spin XY systems. Acta Physica Sinica, 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [10] Jiang Chun-Lei, Liu Xiao-Juan, Liu Ming-Wei, Wang Yan-Hui, Peng Zhao-Hui. Properties and coherence-controlling of entanglement of a two-qubit Heisenberg XY chain with intrinsic decoherence. Acta Physica Sinica, 2012, 61(17): 170302. doi: 10.7498/aps.61.170302
    [11] Zhang Ying-Li, Zhou Bin. Thermal entanglement in the four-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [12] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [13] Feng Hai-Ran, Li Peng, Zheng Yu-Jun, Ding Shi-Liang. Dynamical entanglement of vibrations in the linear triatomic molecule by the algebraic approach. Acta Physica Sinica, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [14] Ma Hai-Qiang, Wang Su-Mei, Wu Ling-An. A single photon source based on entangled photon pairs. Acta Physica Sinica, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [15] Du Xiu-Mei, Man Zhong-Xiao, Xia Yun-Jie. On the properties and controlling of thermal entanglement in a two-qubit Heisenberg XY model with external magnetic fields. Acta Physica Sinica, 2008, 57(12): 7457-7462. doi: 10.7498/aps.57.7457
    [16] Qin Meng, Tian Dong-Ping, Tao Ying-Juan. The effect of impurity on the thermal entanglement in three-qutrit spin-1 Heisenberg XXX chain. Acta Physica Sinica, 2008, 57(9): 5395-5399. doi: 10.7498/aps.57.5395
    [17] Xiang Shao-Hua, Yang Xiong, Song Ke-Hui. Time evolution of two-atom entanglement and thermal entanglement in a generalized Jaynes-Cummings model. Acta Physica Sinica, 2004, 53(5): 1289-1292. doi: 10.7498/aps.53.1289
    [18] Zhang Tao, Xi Xiao-Qiang, Yue Rui-Hong. The effect of impurity on the entanglement between the normal lattice in three-qubit Heisenberg XX chain. Acta Physica Sinica, 2004, 53(8): 2755-2760. doi: 10.7498/aps.53.2755
    [19] Zuo Zhan-Chun, Xia Yun-Jie. The evolution property of three-body entanglement measure in Tavis-Cummings mode l. Acta Physica Sinica, 2003, 52(11): 2687-2693. doi: 10.7498/aps.52.2687
    [20] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
Metrics
  • Abstract views:  6248
  • PDF Downloads:  285
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2016
  • Accepted Date:  14 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map