Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of ultrahigh strength bulk metallic glasses

Wei Xin-Quan Bi Jia-Zi Li Ran

Citation:

Development of ultrahigh strength bulk metallic glasses

Wei Xin-Quan, Bi Jia-Zi, Li Ran
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is always desirable to develop bulk metal materials with extremely mechanical properties. Ultrahigh strength bulk metallic glass (BMG) is a kind of advanced metallic material with extremely high strength (above 4 GPa), high thermal stability (the glass transition temperature: normally above 800 K), and high hardness (normally above 12 GPa). A typical system of the ultrahigh strength BMG is Co-Ta-B alloy with a fracture strength of above 6 GPa, which is the highest value in the fracture strengths for all kinds of bulk metallic materials (including crystalline and amorphous ones) that we have known so far. In this paper, the compositions, thermal properties, elastic constants, and mechanical properties for all of the reported ultrahigh strength BMGs are summarized. The research progress of these BMGs is also introduced. The correlations among the characteristic temperature, elastic constants, hardness and mechanical properties are built, and the natures of chemical bonding for the ultrahigh strength and high hardness of these BMGs are revealed. The results relating to the structure and physical properties of this kind of ultrahigh strength BMG are significant for potential applications in advanced manufacture, super-durable components and machining.
      Corresponding author: Li Ran, liran@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51131002), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142008), and the Beijing Natural Science Foundation, China (Grant No. 2172034).
    [1]

    Ashby M F 2005 Materials Selection in Mechanical Design (Third Edition) (Butterworth-Heinemann) pp1-9

    [2]

    Lu K 2010 Science 328 319

    [3]

    Morris Jr J W, Guo Z, Krenn C R, Kim Y H 2001 ISIJ International 41 599

    [4]

    Li Y, Raabe D, Herbig M, Choi P P, Goto S, Kostka A, Yarita H 2014 Phys. Rev. Lett. 113 106104

    [5]

    Li Y J, Choi P, Goto S Borchers C, Raabe D, Kirchheim R 2012 Acta Mater. 60 4005

    [6]

    Ashby M F, Greer A L 2006 Scripta Mater. 54 321

    [7]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [8]

    Inoue A 2000 Acta Mater 48 279

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Chen H S 1974 Acta Metall. 22 1505

    [11]

    Drehman A J, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [12]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [13]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 425

    [14]

    Inoue A, Kato A, Zhang T 1991 Mater. Trans. JIM 32 609

    [15]

    Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005

    [16]

    Inoue A, Zhang T 1996 Mater. Trans. JIM 37 185

    [17]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [18]

    Inoue A Shinohara1 Y, Gook J S 1995 Mater. Trans. JIM 36 1427

    [19]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nature Mater. 2 661

    [20]

    Chang C T, Shen B L, Inoue A 2006 Appl. Phys. Lett. 88 011901

    [21]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2004 Acta Mater. 52 1631

    [22]

    Zhang T, Yang Q, Ji Y F, Li R, Pang S J, Wang J F, Xu T 2011 Chin. Sci. Bull. 56 3972

    [23]

    Inoue A, Shen B L, Chang C T 2006 Intermetallics 14 936

    [24]

    Wang J Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072

    [25]

    Dun T T, Liu H S, Shen B L 2012 J. Non-Cryst. Solids 358 3060

    [26]

    Wang J F, Wang L G, Guan S K, Zhu S J, Li R, Zhang T 2014 J. Alloys Compod. 617 7

    [27]

    Wang J F, Li R, Xiao R J, Xu T, Li R, Liu Z Q, Huang L, Hua N B, Li G, Li Y C, Zhang T 2011 Appl. Phys. Lett. 99 151911

    [28]

    Man Q K, Sun H J, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A 2010 Intermetallics 18 1876

    [29]

    Dong Y Q, Wang A D, Man Q K, Shen B L 2012 Intermetallics 23 63

    [30]

    Shen B L, Inoue A, Chang C T 2004 Appl. Phys. Lett. 85 4911

    [31]

    Lin C Y, Li M C, Chin T S 2007 J. Phys. D: Appl. Phys. 40 310

    [32]

    Yao J H, Wang J Q, Li Y 2008 Appl. Phys. Lett 92 251906

    [33]

    Yao J H, Yang H, Zhang J, Wang J Q, Li Y 2008 J. Mater. Res. 23 392

    [34]

    Chang Z Y, Huang X M, Chen L Y, Ge M Y, Jiang Q K, Nie X P, Jiang J Z 2009 Mater. Sci. Engineer. A 517 246

    [35]

    Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H 2010 Appl. Phys. Lett. 96 031905

    [36]

    Gu X J, Joseph P S, Shiflet G J 2007 J. Mater. Res. 22 344

    [37]

    Wei X Q 2017 M. S. Dissertation (Beijing: Beihang University) (in Chinese) [魏新权 2017 硕士学位论文 (北京: 北京航空航天大学)]

    [38]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [39]

    Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513

    [40]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275

    [41]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [42]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [43]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203

    [44]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 95501

  • [1]

    Ashby M F 2005 Materials Selection in Mechanical Design (Third Edition) (Butterworth-Heinemann) pp1-9

    [2]

    Lu K 2010 Science 328 319

    [3]

    Morris Jr J W, Guo Z, Krenn C R, Kim Y H 2001 ISIJ International 41 599

    [4]

    Li Y, Raabe D, Herbig M, Choi P P, Goto S, Kostka A, Yarita H 2014 Phys. Rev. Lett. 113 106104

    [5]

    Li Y J, Choi P, Goto S Borchers C, Raabe D, Kirchheim R 2012 Acta Mater. 60 4005

    [6]

    Ashby M F, Greer A L 2006 Scripta Mater. 54 321

    [7]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [8]

    Inoue A 2000 Acta Mater 48 279

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Chen H S 1974 Acta Metall. 22 1505

    [11]

    Drehman A J, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [12]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [13]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 425

    [14]

    Inoue A, Kato A, Zhang T 1991 Mater. Trans. JIM 32 609

    [15]

    Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005

    [16]

    Inoue A, Zhang T 1996 Mater. Trans. JIM 37 185

    [17]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [18]

    Inoue A Shinohara1 Y, Gook J S 1995 Mater. Trans. JIM 36 1427

    [19]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nature Mater. 2 661

    [20]

    Chang C T, Shen B L, Inoue A 2006 Appl. Phys. Lett. 88 011901

    [21]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2004 Acta Mater. 52 1631

    [22]

    Zhang T, Yang Q, Ji Y F, Li R, Pang S J, Wang J F, Xu T 2011 Chin. Sci. Bull. 56 3972

    [23]

    Inoue A, Shen B L, Chang C T 2006 Intermetallics 14 936

    [24]

    Wang J Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072

    [25]

    Dun T T, Liu H S, Shen B L 2012 J. Non-Cryst. Solids 358 3060

    [26]

    Wang J F, Wang L G, Guan S K, Zhu S J, Li R, Zhang T 2014 J. Alloys Compod. 617 7

    [27]

    Wang J F, Li R, Xiao R J, Xu T, Li R, Liu Z Q, Huang L, Hua N B, Li G, Li Y C, Zhang T 2011 Appl. Phys. Lett. 99 151911

    [28]

    Man Q K, Sun H J, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A 2010 Intermetallics 18 1876

    [29]

    Dong Y Q, Wang A D, Man Q K, Shen B L 2012 Intermetallics 23 63

    [30]

    Shen B L, Inoue A, Chang C T 2004 Appl. Phys. Lett. 85 4911

    [31]

    Lin C Y, Li M C, Chin T S 2007 J. Phys. D: Appl. Phys. 40 310

    [32]

    Yao J H, Wang J Q, Li Y 2008 Appl. Phys. Lett 92 251906

    [33]

    Yao J H, Yang H, Zhang J, Wang J Q, Li Y 2008 J. Mater. Res. 23 392

    [34]

    Chang Z Y, Huang X M, Chen L Y, Ge M Y, Jiang Q K, Nie X P, Jiang J Z 2009 Mater. Sci. Engineer. A 517 246

    [35]

    Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H 2010 Appl. Phys. Lett. 96 031905

    [36]

    Gu X J, Joseph P S, Shiflet G J 2007 J. Mater. Res. 22 344

    [37]

    Wei X Q 2017 M. S. Dissertation (Beijing: Beihang University) (in Chinese) [魏新权 2017 硕士学位论文 (北京: 北京航空航天大学)]

    [38]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [39]

    Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513

    [40]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275

    [41]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [42]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [43]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203

    [44]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 95501

  • [1] Wang Long, Wang Liu-Ying, Liu Gu, Tang Xiu-Jian, Ge Chao-Qun, Wang Bin, Xu Ke-Jun, Wang Xin-Jun. Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure. Acta Physica Sinica, 2023, 72(24): 244202. doi: 10.7498/aps.72.20231084
    [2] Qiu Ke-Peng, Luo Yue, Zhang Wei-Hong. Analysis and design of new chiral metamaterials with asymmetric transmission characteristics. Acta Physica Sinica, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [3] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [4] Wu Yuan, Song Wen-Li, Zhou Jie, Cao Di, Wang Hui, Liu Xiong-Jun, Lü Zhao-Ping. Ductilization of bulk metallic glassy material and its mechanism. Acta Physica Sinica, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [5] Bao Kuo, Ma Shuai-Ling, Xu Chun-Hong, Cui Tian. Design of ultra-hard multifunctional transition metal compounds. Acta Physica Sinica, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [6] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [7] Xu Wen-Xiang, Sun Hong-Guang, Chen Wen, Chen Hui-Su. A review of correlative modeling for transport properties, microstructures, and compositions of granular materials in soft matter. Acta Physica Sinica, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [8] Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang. Shock plasticity design of brittle material. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [9] Huang Da-Qing, Kang Fei-Yu, Zhou Zhuo-Hui, Liu Xiang, Cheng Hong-Fei. Design and verification of microwave low frequency band-pass and high frequency band-stop composite structure. Acta Physica Sinica, 2015, 64(18): 188401. doi: 10.7498/aps.64.188401
    [10] Liao Guang-Kai, Long Zhi-Lin, Xu Fu, Liu Wei, Zhang Zhi-Yang, Yang Miao. Investigation on the viscoelastic behavior of an Fe-base bulk amorphous alloys based on the fractional order rheological model. Acta Physica Sinica, 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [11] Hu Yong, Yan Hong-Hong, Lin Tao, Li Jin-Fu, Zhou Yao-He. Free volume evolution of pre-annealed Zr55Al10Ni5Cu30 bulk metallic glass during rolling. Acta Physica Sinica, 2012, 61(8): 087102. doi: 10.7498/aps.61.087102
    [12] Peng Jian, Long Zhi-Lin, Wei Hong-Qing, Li Xiang-An, Zhang Zhi-Chun. Creep behavior of a Fe-based bulk amorphous alloy using nanoindentation. Acta Physica Sinica, 2009, 58(6): 4059-4065. doi: 10.7498/aps.58.4059
    [13] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [14] Ye Xiang-Xi, Ming Chen, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the ability for bulk materials to form single crystals. Acta Physica Sinica, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [15] Jiang Jian-Jun, Yuan Lin, Deng Lian-Wen, He Hua-Hui. Micromagnetics study of the magnetic nano-granular films. Acta Physica Sinica, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [16] Wang Qing, Qiang Jian-Bing, Wang Ying-Min, Xia Jun-Hai, Lin Zhe, Zhang Xin-Fang, Dong Chuang. Formation and composition optimization of Cu-based bulk metallic glasses in Cu-Zr-Ti ternary system. Acta Physica Sinica, 2006, 55(1): 378-385. doi: 10.7498/aps.55.378
    [17] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui. Study on preparation and properties of ZnO nano-bulk materials. Acta Physica Sinica, 2005, 54(5): 2409-2413. doi: 10.7498/aps.54.2409
    [18] Liu Yi, Wu Zi-Fang, Liu Lin, Zhang Tao. Study on structure relaxation of Zr5555Cu3030Al10 10Ni55bulk amorphous alloy. Acta Physica Sinica, 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [19] Liu Yi, Liu Lin, Wang Jun, Zhao Hui, Rong Li-Xia, Dong Bao-Zhong. In-situ study on structural relaxation of Zr55Cu30Al1 0Ni5bulk amorphous alloy by SAXS. Acta Physica Sinica, 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
    [20] WANG YIN-JUN, TANG QIAN, YANG KE-MIN, CAI HENG, SHEN JIAN-XIANG, ZHANG XU-XIN. THE PROPERTIES OF AMORPHOUS GdTbFe FILM FOR MAGNETO-OPTICAL RECORDING. Acta Physica Sinica, 1987, 36(6): 705-711. doi: 10.7498/aps.36.705
Metrics
  • Abstract views:  7293
  • PDF Downloads:  549
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2017
  • Accepted Date:  16 July 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map