Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An adaptive three-Gauss model based on memristive cross array and its application in image enhancement

Liu Qi Wang Li-Dan Duan Shu-Kai

Citation:

An adaptive three-Gauss model based on memristive cross array and its application in image enhancement

Liu Qi, Wang Li-Dan, Duan Shu-Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In visual image processing, there is a three-Gauss model used to simulate the receptive field of retinal ganglion cells, which can realize image enhancement to a certain extent, such as image edge and information about details. However, in dealing with a large number of image data, it is necessary to manually adjust the parameters of the three-Gauss model in order to achieve better results, which is a very tedious and time-consuming process. According to this, in this paper we propose an adaptive three-Gauss model based on memristive cross array. Memristor, whose resistance is controlled by size, polarity and power supply time of the power supply, is a kind of non-volatile component. Moreover, if the voltage applied to both ends of memristor is removed, it can still keep the resistance value when the power is off. Many studies show that when voltage pulses with the different amplitudes and the same width are applied to both ends of the memristor, the resistance will change continuously. This principle is adopted to realize image storage. Therefore, it makes use of the characteristics of memristor in this paper. The proposed model is based on the traditional three-Gauss model and changes the model parameters by using the dynamic characteristics of memristive cross array according to the local characteristics of the image to be processed, in order to achieve the purpose of local optimization and make the whole image obtain better enhancement effect. First of all, according to the local brightness information of the image, the polarity and the width of the pulse voltage required by the memristor are determined. Then, the values of the model parameters corresponding to the memristance can be obtained. Finally, the local enhancement template will be available to realize the enhancement. In this paper, the color and gray images are selected. The qualitative and quantitative experimental results show that the proposed adaptive three-Gauss model based on memristive cross array can not only effectively enhance the edge contour of the image, but also greatly improve the image contrast and clarity. Moreover, it provides a new direction for the application of memristor to image processing.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571372, 61672436, 61372139), the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2016A001, XDJK2014A009), and the Program for New Century Excellent Talents in University, China (Grant No. [2013]47).
    [1]

    Li H, Wu W, Yang X M, Yan B Y, Liu K, Jeon G 2016 Acta Phys. Sin. 65 160701 (in Chinese) [李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon 2016 65 160701]

    [2]

    Bi G L, Xu Z J, Zhao J, Sun Q 2015 Acta Phys. Sin. 64 100701 (in Chinese) [毕国玲, 续志军, 赵建, 孙强 2015 64 100701]

    [3]

    He K M, Sun J, Tang X O 2013 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397

    [4]

    Gianini G, Manenti A, Rizzi A 2014 J. Opt. Soc. Am. A 31 2663

    [5]

    Gianini G, Rizzi A, Damiani E 2016 Inf. Sci 327 149

    [6]

    Mccann J J, Parraman C, Rizzi A 2014 Front. Psychol. 5 1

    [7]

    Wang Y F, Wang H Y, Yin C L, Dai M 2016 Neurocomputing 177 373

    [8]

    Jobson D J, Rahman Z U, Woodell G A 1997 IEEE Trans. Image Process 6 965

    [9]

    Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process 6 451

    [10]

    Rodieck R W 1965 Vision Res. 5 583

    [11]

    Li C Y, Xing P, Zhou Y X 1991 Vision Res. 31 1529

    [12]

    Solomon S G, White A J, Martin P R 2002 J. Neurosci. 22 338

    [13]

    Nolt M J, Kumbhani R D, Palmer L A 2004 J. Neurophysiol. 92 1708

    [14]

    Xu Z L 2012 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [许子龙 2012 硕士学位论文 (成都: 电子科技大学)]

    [15]

    Ahn H, Keum B, Kim D, Lee H S 2013 IEEE Int. Conf. Consum. Electron 2013 p153

    [16]

    Zhang E H, Yang H Y, Xu M P 2015 Appl. Math. Inf. Sci. 9 411

    [17]

    Jang I S, Lee T H, Ha H G, Ha Y H 2010 International Symposium on Optomechatronic Technologies Toronto, Canada, October 25-27, 2010 p1

    [18]

    Wang Y, Yang J, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 237303 (in Chinese) [王颜, 杨玖, 王丽丹, 段书凯 2015 64 237303]

    [19]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifur. Chaos 22 1250205

    [20]

    Hu X F, Duan S K, Wang L D, Liao X F 2011 Sci. China: Inf. Sci. 41 500 (in Chinese) [胡小方, 段书凯, 王丽丹, 廖晓峰 2011 中国科学: 信息科学 41 500]

    [21]

    Duan S K, Hu X F, Dong Z K, Wang L, Mazumder P 2014 IEEE Trans. Neural Netw. Learn. Syst 26 1202

    [22]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2015 Neurocomputing 171 23

    [23]

    Agaian S S, Silver B, Panetta K A 2007 IEEE Trans. Image Process 16 741

    [24]

    Agaian S S, Lentz K P, Grigoryan A M 2000 IASTED International Conference on Signal Processing Communication Marbella, Spain, September 19-22, 2000

  • [1]

    Li H, Wu W, Yang X M, Yan B Y, Liu K, Jeon G 2016 Acta Phys. Sin. 65 160701 (in Chinese) [李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon 2016 65 160701]

    [2]

    Bi G L, Xu Z J, Zhao J, Sun Q 2015 Acta Phys. Sin. 64 100701 (in Chinese) [毕国玲, 续志军, 赵建, 孙强 2015 64 100701]

    [3]

    He K M, Sun J, Tang X O 2013 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397

    [4]

    Gianini G, Manenti A, Rizzi A 2014 J. Opt. Soc. Am. A 31 2663

    [5]

    Gianini G, Rizzi A, Damiani E 2016 Inf. Sci 327 149

    [6]

    Mccann J J, Parraman C, Rizzi A 2014 Front. Psychol. 5 1

    [7]

    Wang Y F, Wang H Y, Yin C L, Dai M 2016 Neurocomputing 177 373

    [8]

    Jobson D J, Rahman Z U, Woodell G A 1997 IEEE Trans. Image Process 6 965

    [9]

    Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process 6 451

    [10]

    Rodieck R W 1965 Vision Res. 5 583

    [11]

    Li C Y, Xing P, Zhou Y X 1991 Vision Res. 31 1529

    [12]

    Solomon S G, White A J, Martin P R 2002 J. Neurosci. 22 338

    [13]

    Nolt M J, Kumbhani R D, Palmer L A 2004 J. Neurophysiol. 92 1708

    [14]

    Xu Z L 2012 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [许子龙 2012 硕士学位论文 (成都: 电子科技大学)]

    [15]

    Ahn H, Keum B, Kim D, Lee H S 2013 IEEE Int. Conf. Consum. Electron 2013 p153

    [16]

    Zhang E H, Yang H Y, Xu M P 2015 Appl. Math. Inf. Sci. 9 411

    [17]

    Jang I S, Lee T H, Ha H G, Ha Y H 2010 International Symposium on Optomechatronic Technologies Toronto, Canada, October 25-27, 2010 p1

    [18]

    Wang Y, Yang J, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 237303 (in Chinese) [王颜, 杨玖, 王丽丹, 段书凯 2015 64 237303]

    [19]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifur. Chaos 22 1250205

    [20]

    Hu X F, Duan S K, Wang L D, Liao X F 2011 Sci. China: Inf. Sci. 41 500 (in Chinese) [胡小方, 段书凯, 王丽丹, 廖晓峰 2011 中国科学: 信息科学 41 500]

    [21]

    Duan S K, Hu X F, Dong Z K, Wang L, Mazumder P 2014 IEEE Trans. Neural Netw. Learn. Syst 26 1202

    [22]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2015 Neurocomputing 171 23

    [23]

    Agaian S S, Silver B, Panetta K A 2007 IEEE Trans. Image Process 16 741

    [24]

    Agaian S S, Lentz K P, Grigoryan A M 2000 IASTED International Conference on Signal Processing Communication Marbella, Spain, September 19-22, 2000

  • [1] Zhang Hang-Ying, Wang Xue-Qi, Wang Hua-Ying, Cao Liang-Cai. Advanced Retinex-Net image enhancement method based on value component processing. Acta Physica Sinica, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [2] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [3] Liu Jie,  Zhang Jian-Xun,  Dai Yu. Image enhancement based on multi-guided filtering. Acta Physica Sinica, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [4] Wang Cong, Yang Jing, Pan Xiu-Juan, Cai Gao-Hang, Zhao Wei, Zhang Jing-Yuan, Cui Da-Fu, Peng Qin-Jun, Xu Zu-Yan. Image restoration and enhancement based on phase conjugation of optical parametric amplification. Acta Physica Sinica, 2017, 66(10): 104205. doi: 10.7498/aps.66.104205
    [5] Wang Yan, Wang Fei, Wang Ting-Feng, Xie Jing-Jiang. Laser array imaging point cloud registration based on adaptive threshold. Acta Physica Sinica, 2016, 65(24): 249501. doi: 10.7498/aps.65.249501
    [6] Zhang Yao, Tang Shan-Zhi, Li Ming, Wang Li-Chao, Gao Jun-Xiang. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources. Acta Physica Sinica, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [7] Zhang Qian, Liu Guang-Bin, Yu Zhi-Yong, Guo Jin-Ku. An adaptive global optimization algorithm of cooperative spectrum sensing with relay. Acta Physica Sinica, 2015, 64(1): 018404. doi: 10.7498/aps.64.018404
    [8] Bi Guo-Ling, Xu Zhi-Jun, Zhao Jian, Sun Qiang. Multispectral image enhancement based on irradiation-reflection model and bounded operation. Acta Physica Sinica, 2015, 64(10): 100701. doi: 10.7498/aps.64.100701
    [9] Wang Yue-Gang, Wen Chao-Bin, Zuo Zhao-Yang, Yang Jia-Sheng, Guo Zhi-Bin. Adaptive chaotic ant colony optimization-RD based gravity matching aided navigation. Acta Physica Sinica, 2014, 63(8): 089101. doi: 10.7498/aps.63.089101
    [10] Yu Hai-Tao, Wang Jiang. Chaos synchronization of FitzHugh-Nagumo neurons via backstepping and adaptive dynamical sliding mode control. Acta Physica Sinica, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511
    [11] Wang Yue-Gang, Wen Chao-Bin, Yang Jia-Sheng, Zuo Zhao-Yang, Cui Xiang-Xiang. Adaptive control of chaotic systems based on model free method. Acta Physica Sinica, 2013, 62(10): 100504. doi: 10.7498/aps.62.100504
    [12] Liu Fu-Cai, Li Jun-Yi, Zang Xiu-Feng. Anti-synchronization of different hyperchaotic systems based on adaptive active control and fractional sliding mode control. Acta Physica Sinica, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [13] Zhao Ling-Dong, Hu Jian-Bing, Liu Xu-Hui. Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters. Acta Physica Sinica, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [14] Wu Zhong-Qiang, Kuang Yu. Generalized synchronization control of multi-scroll chaotic systems. Acta Physica Sinica, 2009, 58(10): 6823-6827. doi: 10.7498/aps.58.6823
    [15] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters. Acta Physica Sinica, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [16] Wang Xing-Yuan, Meng Juan. Adaptive projective synchronization and parameter identification of Takagi-Sugeno fuzzy hyperchaotic systems. Acta Physica Sinica, 2009, 58(6): 3780-3787. doi: 10.7498/aps.58.3780
    [17] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica, 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [18] Liu Fu-Cai, Liang Xiao-Ming, Song Jia-Qiu. Adaptive dual-model control and synchronization of generalized Hénon chaotic systems. Acta Physica Sinica, 2008, 57(3): 1458-1464. doi: 10.7498/aps.57.1458
    [19] Gong Li-Hua. Study of chaos control based on adaptive pulse perturbation. Acta Physica Sinica, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [20] Tao Chao-Hai, Lu Jun-An. Control of a unified chaotic system. Acta Physica Sinica, 2003, 52(2): 281-284. doi: 10.7498/aps.52.281
Metrics
  • Abstract views:  5809
  • PDF Downloads:  200
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2017
  • Accepted Date:  31 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map