搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应阈值的阵列激光三维点云配准

王岩 王飞 王挺峰 谢京江

引用本文:
Citation:

基于自适应阈值的阵列激光三维点云配准

王岩, 王飞, 王挺峰, 谢京江

Laser array imaging point cloud registration based on adaptive threshold

Wang Yan, Wang Fei, Wang Ting-Feng, Xie Jing-Jiang
PDF
导出引用
  • 阵列激光三维成像作为一种新型的非合作目标三维图像获取技术,高效的回波信号处理和三维重构方法是提高其探测能力和成像精度的前提,其中配准过程是阵列激光三维成像点云数据处理中必不可少的步骤.本文根据阵列激光三维成像系统的成像特点,对迭代最近点(ICP)配准算法中阈值设定依据进行分析,结合阵列激光三维成像系统中的重要参数测距精度和成像横向分辨率,对配准迭代过程中对应点距离阈值和迭代停止阈值进行有针对的设置,提出了基于自适应阈值的ICP点云配准方法.对阵列激光成像点云和扫描激光深度成像数据的实验表明该算法有效可行,能够提高配准精度和配准速度,同时由于该算法充分考虑了成像系统本身,在实际应用中对系统的合理设计具有一定的指导意义.
    Laser three-dimensional (3D) image is a novel non-cooperative target 3D image acquisition technology, and the improvements in detection capability and imaging accuracy of the system are critically dependent on efficient echo-signal processing technique and 3D reconstruction method. The registration process is an essential step in array 3D imaging laser point cloud data processing. Registration of point clouds is an effective method that solves the problem caused by the target self-occlusion in the laser 3D imaging system. The accurate registration result will help provide better support for subsequent applications, such as object reconstruction and target recognition. In this study, a set of thresholds in the iterative closest point (ICP) algorithm is analysed on the basis of the characteristics of the laser array 3D imaging system and is combined with the range error and visual lateral resolution of the system, which are both important parameters in the imaging system. To improve the accuracy and speed of registration, the stop threshold of the iterative algorithm and the corresponding point-distance threshold in the algorithm are established in a novel way based on the range error and visual lateral resolution of the system. This forms the foundation, based on which an adaptive threshold ICP algorithm is proposed. The principal idea of the algorithm is to improve the threshold set that has a considerable effect on the accuracy and speed of registration. At first, the characteristics of the imaging point clouds of the laser array 3D imaging system are analysed in the algorithm. Based on this analysis, the distance between the two point clouds and corresponding points with ideal registrations are estimated theoretically, according to the range error and visual lateral resolution of the system. The simulation results show that the theoretically estimated results and actual results have the same variation tendency, thus providing a theoretical basis for subsequent improvements. Next, the estimated results are added according to the iterative closest point algorithm. This implies that the registration thresholds are capable of changing and adapting under different iterations and imaging systems, thus improving the speed and accuracy of registrations. This phenomenon is not seen in other algorithms. Experiments involving laser array imaging of a point cloud and laser scanning of depth imaging data show that the algorithm is practical and effective for both imaging types of point clouds and can improve the speed and accuracy of registration notably. The effectiveness and feasibility of the proposed algorithm are thus verified. In addition, for its full consideration of the imaging system, the basic idea of the proposed algorithm can be used for designing future applications as required.
      通信作者: 王岩, wyciomp@163.com
      Corresponding author: Wang Yan, wyciomp@163.com
    [1]

    Albota M A, Aull B F, Fouche D G, Heinrichs R M, Kocher D G, Marino R M, Mooney J G, Newbury N R, O'Brien M E, Player B E, Willard B C, Zayhowski J J 2002 Linc. Lab. J. 13 351

    [2]

    Marino R M, Stephens T, Hatch R E, Mclaughlin J L, Mooney J G, Obrien M E, Rowe G S, Adams J S, Skelly L, Knowlton R C, Forman S E, Davis W R 2003 Proc. SPIE 5086 1

    [3]

    Besl P J, Mckay N D 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 239

    [4]

    Wang Y, Zhang M M, Yu X, Zhang C M 2012 Opt. Precis. Eng. 20 2068 (in Chinese)[王欣, 张明明, 于晓, 章明朝2012光学精密工程 20 2068]

    [5]

    Jost T, Hugli H 2002 First International Symposium on 3D Data Processing Visualization and Transmission Padova, Italy, June 19-21, 2002 p540

    [6]

    Masuda T, Sakaue K, Yokoya N 1996 Proceedings of the 13th International Conference on Pattern Recognition Washington, DC, USA, August 25-29, 1996 p879

    [7]

    Zinsser T, Schmidt J, Niermann H 2003 2003 International Conference on Image Processing 2 695

    [8]

    Armbruster W, Hammer M 2012 Proc. SPIE 8542 85420K

    [9]

    Guo Y L, Wan J W, Lu M Tan Z G 2012 Opt. Precis. Eng. 20 843 (in Chinese)[郭裕兰, 万建伟, 鲁敏, 谭志国2012光学精密工程 20 843]

    [10]

    Chen Y, Medioni G 1991 Proceedings IEEE International Conference on Robotics and Automation Sacramento, USA, April 9-11, 1991 p2724

    [11]

    Silva L, Bellon O, Boyer K L 2015 Image Vis. Comput. 25 114

  • [1]

    Albota M A, Aull B F, Fouche D G, Heinrichs R M, Kocher D G, Marino R M, Mooney J G, Newbury N R, O'Brien M E, Player B E, Willard B C, Zayhowski J J 2002 Linc. Lab. J. 13 351

    [2]

    Marino R M, Stephens T, Hatch R E, Mclaughlin J L, Mooney J G, Obrien M E, Rowe G S, Adams J S, Skelly L, Knowlton R C, Forman S E, Davis W R 2003 Proc. SPIE 5086 1

    [3]

    Besl P J, Mckay N D 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 239

    [4]

    Wang Y, Zhang M M, Yu X, Zhang C M 2012 Opt. Precis. Eng. 20 2068 (in Chinese)[王欣, 张明明, 于晓, 章明朝2012光学精密工程 20 2068]

    [5]

    Jost T, Hugli H 2002 First International Symposium on 3D Data Processing Visualization and Transmission Padova, Italy, June 19-21, 2002 p540

    [6]

    Masuda T, Sakaue K, Yokoya N 1996 Proceedings of the 13th International Conference on Pattern Recognition Washington, DC, USA, August 25-29, 1996 p879

    [7]

    Zinsser T, Schmidt J, Niermann H 2003 2003 International Conference on Image Processing 2 695

    [8]

    Armbruster W, Hammer M 2012 Proc. SPIE 8542 85420K

    [9]

    Guo Y L, Wan J W, Lu M Tan Z G 2012 Opt. Precis. Eng. 20 843 (in Chinese)[郭裕兰, 万建伟, 鲁敏, 谭志国2012光学精密工程 20 843]

    [10]

    Chen Y, Medioni G 1991 Proceedings IEEE International Conference on Robotics and Automation Sacramento, USA, April 9-11, 1991 p2724

    [11]

    Silva L, Bellon O, Boyer K L 2015 Image Vis. Comput. 25 114

  • [1] 高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才. 面向纯相位型全息显示的自适应混合约束迭代算法.  , 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [2] 樊超阳, 李朝锋, 杨苏辉, 刘欣宇, 廖英琦. CEEMDAN联合小波阈值算法在水下激光雷达中抑制散射杂波的应用.  , 2023, 72(22): 224203. doi: 10.7498/aps.72.20231035
    [3] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法.  , 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [4] 刘俊, 姜其立, 帅麒麟, 李融武, 潘秋丽, 程琳, 王荣. 一种点光源的自适应束斑X射线衍射仪的研制.  , 2021, 70(1): 010701. doi: 10.7498/aps.70.20201228
    [5] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像.  , 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [6] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术.  , 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [7] 王珊, 王辅忠. 基于自适应随机共振理论的太赫兹雷达信号检测方法.  , 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367
    [8] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像.  , 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [9] 王珽, 赵拥军, 赖涛, 王建涛. 机载极化阵列多输入多输出雷达极化空时自适应处理性能分析.  , 2017, 66(4): 048401. doi: 10.7498/aps.66.048401
    [10] 程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰. 变形镜高斯函数指数对迭代法自适应光学系统的影响.  , 2015, 64(9): 094207. doi: 10.7498/aps.64.094207
    [11] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法.  , 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [12] 马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志. 基于匹配算法的脉冲差分吸收CO2激光雷达的稳频研究.  , 2015, 64(15): 154215. doi: 10.7498/aps.64.154215
    [13] 朱航, 张淑宁, 赵惠昌. 基于改进自适应分解法的单通道雷达引信混合信号分离.  , 2014, 63(5): 058401. doi: 10.7498/aps.63.058401
    [14] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法.  , 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [15] 汪照, 李有明, 陈斌, 邹婷. 基于鱼群算法的OFDMA自适应资源分配.  , 2013, 62(12): 128802. doi: 10.7498/aps.62.128802
    [16] 赵俊英, 金宁德, 高忠科. 油气水三相流段塞流不稳定周期轨道探寻.  , 2013, 62(8): 084701. doi: 10.7498/aps.62.084701
    [17] 高国荣, 刘艳萍, 潘琼. 基于小波域可导阈值函数与自适应阈值的脉冲星信号消噪.  , 2012, 61(13): 139701. doi: 10.7498/aps.61.139701
    [18] 孙增国, 韩崇昭. 基于区域分类、自适应滑动窗和结构检测的合成孔径雷达图像联合降斑算法.  , 2010, 59(5): 3210-3220. doi: 10.7498/aps.59.3210
    [19] 甘建超, 肖先赐. 混沌时间序列基于邻域点的非线性多步自适应预测.  , 2003, 52(12): 2995-3001. doi: 10.7498/aps.52.2995
    [20] 神经网络的自适应删剪学习算法及其应用.  , 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  6276
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-28
  • 修回日期:  2016-09-05
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map