Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions

Ding Wu-Wen Sun Li-Qun

Citation:

Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions

Ding Wu-Wen, Sun Li-Qun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A whole-fiber methane sensor under high absorbance based on phase sensitive chirped laser dispersion spectroscopy is presented in this paper. The laser source of the sensor is a tunable distributed feedback diode laser with a frequency of 1653.7 nm. A telecom-based electro-optical intensity Mach-Zehnder modulator working in carrier suppression mode is adapted to modulate the single frequency laser beam for generating a dual-sideband spectrum beside the carrier wave. Unlike previous proposed phase sensitive chirped laser dispersion spectroscopy scheme, the beatnote signal generated by the two sidebands is detected experimentally. The refractive index fluctuation around the 23 transition of methane is measured by detecting the phase variation of the dual-sideband beatnote signal through using the heterodyne interferometric method. A lock-in amplifier is employed in the phase demodulation process. By connecting the refractive index (the real part of the complex refraction index) and the absorption coefficient (the imaginary part of the complex refraction index) via Kramers-Kroning relation, the gas concentration information is retrieved from the optical dispersion measurement. Absorption-based wavelength modulation spectroscopy measures the gas concentration encoded in the optical intensity based on Beer-Lambert's law. However, the signal sensitivity of wavelength modulation spectroscopy decreases, and the signal even decreases while the gas concentration is raised in high absorbance condition, which leads to an uncertainty in concentration measurement. Experimental results demonstrate that wavelength modulation spectroscopy has better performance in low absorbance condition. The detection limit is about 38.1 ppmm. However, because the sensitivity decreases in high absorbance conditions, the upper detection limit of wavelength modulation spectroscopy is only 1500 ppmm. The dynamic range is defined through dividing the upper detection limit by the detection limit. Therefore, the wavelength modulation spectroscopy obtains a linear measurement dynamic range of 16 dB. Nevertheless, under the same experimental condition, the phase sensitive chirped laser dispersion spectroscopy has a much larger linear measurement range from 47.3 ppmm to 174825 ppmm with a dynamic range higher than 35 dB. Absorption-based gas measurement technique such as wavelength modulation spectroscopy can achieve a low detection limit by using long optical path at the expense of lower upper limit concentration. Phase sensitive chirped laser dispersion spectroscopy appears to be effective in high absorbance condition, which may be caused by high concentration or long optical path. Furthermore, by combining phase sensitive chirped laser dispersion spectroscopy and long optical path technique such as multi pass cell in sensor design, large linear measurement dynamic range and low detection limit can be obtained at the same time.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant Nos. 2012YQ200182, 2012YQ0901670602).
    [1]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 61 050701]

    [2]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [3]

    Sanders S T, Baldwin J A, Jenkins T P, Baer D S, Hanson R K 2000 Proc. Combust. Inst. 28 587

    [4]

    Wainner R T, Green B D, Allen M G, Frish M B, White M A, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [5]

    Ding W W, Sun L Q, Yi L Y, Zhang E Y 2016 Meas. Sci. Technol. 27 085202

    [6]

    Seiter M, Sigrist M W 1999 Appl. Opt. 38 4691

    [7]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [8]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [9]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese) [许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 61 234204]

    [10]

    Philippe L C, Hanson R K 1993 Appl. Opt. 32 6090

    [11]

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702 (in Chinese) [宋俊玲, 洪延姬, 王广宇, 潘虎 2012 61 240702]

    [12]

    Rieker G B, Li H, Liu X, Liu J T C, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S, Kakuho A, Sholes K R, Matsuura T, Takatani S 2007 Proc. Combust. Inst. 31 3041

    [13]

    Peng Z, Ding Y, Lu C, Li X, Zheng K 2011 Opt. Express 19 23104

    [14]

    Duffin K, Mcgettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [15]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [16]

    Mclean A B, Mitchell C E J, Swanston D M 2002 J. Electron Spectrosc. Relat. Phenom. 69 125

    [17]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [18]

    Wysocki G, Weidmann D 2010 Opt. Express 18 26123

    [19]

    Nikodem M, Plant G, Wang Z, Prucnal P, Wysocki G 2013 Opt. Express 21 14649

    [20]

    Nikodem M, Weidmann D, Smith C, Wysocki G 2012 Opt. Express 20 644

    [21]

    Nikodem M, Krzempek K, Karwat R, Dudzik G, Abramski K, Wysocki G 2014 Opt. Lett. 39 4420

    [22]

    Martnmateos P, Acedo P 2014 Opt. Express 22 15143

    [23]

    Ding W, Sun L, Yi L, Ming X 2016 Appl. Opt. 55 8698

    [24]

    Velicky B 1961 Czech. J. Phys. 11 787

  • [1]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 61 050701]

    [2]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [3]

    Sanders S T, Baldwin J A, Jenkins T P, Baer D S, Hanson R K 2000 Proc. Combust. Inst. 28 587

    [4]

    Wainner R T, Green B D, Allen M G, Frish M B, White M A, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [5]

    Ding W W, Sun L Q, Yi L Y, Zhang E Y 2016 Meas. Sci. Technol. 27 085202

    [6]

    Seiter M, Sigrist M W 1999 Appl. Opt. 38 4691

    [7]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [8]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [9]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese) [许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 61 234204]

    [10]

    Philippe L C, Hanson R K 1993 Appl. Opt. 32 6090

    [11]

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702 (in Chinese) [宋俊玲, 洪延姬, 王广宇, 潘虎 2012 61 240702]

    [12]

    Rieker G B, Li H, Liu X, Liu J T C, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S, Kakuho A, Sholes K R, Matsuura T, Takatani S 2007 Proc. Combust. Inst. 31 3041

    [13]

    Peng Z, Ding Y, Lu C, Li X, Zheng K 2011 Opt. Express 19 23104

    [14]

    Duffin K, Mcgettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [15]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [16]

    Mclean A B, Mitchell C E J, Swanston D M 2002 J. Electron Spectrosc. Relat. Phenom. 69 125

    [17]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [18]

    Wysocki G, Weidmann D 2010 Opt. Express 18 26123

    [19]

    Nikodem M, Plant G, Wang Z, Prucnal P, Wysocki G 2013 Opt. Express 21 14649

    [20]

    Nikodem M, Weidmann D, Smith C, Wysocki G 2012 Opt. Express 20 644

    [21]

    Nikodem M, Krzempek K, Karwat R, Dudzik G, Abramski K, Wysocki G 2014 Opt. Lett. 39 4420

    [22]

    Martnmateos P, Acedo P 2014 Opt. Express 22 15143

    [23]

    Ding W, Sun L, Yi L, Ming X 2016 Appl. Opt. 55 8698

    [24]

    Velicky B 1961 Czech. J. Phys. 11 787

  • [1] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [2] Li Shao-Min, Sun Li-Qun. Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy. Acta Physica Sinica, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [3] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Li Zheng, Peng Zhi-Min. Monitoring of ambient carbon monoxide concentrations based on wavelength modulation direct absorption spectroscopy. Acta Physica Sinica, 2022, 71(4): 044205. doi: 10.7498/aps.71.20211772
    [4] Shaomin Li,  Liqun Sun. Large absorbance methane measurement based on wavelength modulation spectroscopy. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [5] Monitoring of ambient carbon monoxide concentrations based on wavelength modulation direct absorption spectroscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211772
    [6] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. High precision calibration of spectral parameters of CO at 1567 nm based on wavelength modulation-direct absorption spectroscopy. Acta Physica Sinica, 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [7] Kong Xin-Xin, Zhang Wen-Xi, Cai Qi-Sheng, Wu Zhou, Dai Yu, Xiang Li-Bin. Multi beam hybrid heterodyne interferometry based phase enhancement technology. Acta Physica Sinica, 2020, 69(19): 190601. doi: 10.7498/aps.69.20200281
    [8] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [9] Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity. Acta Physica Sinica, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [10] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [11] Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying. High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [12] Liao Lei, Yi Wang-Min, Yang Zai-Hua, Wu Guan-Hao. Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser. Acta Physica Sinica, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [13] Zhang Shu-Feng, Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Peng Zhi-Min. Theoretical and applied researches on measuring line width in wavelength modulation spectroscopy. Acta Physica Sinica, 2015, 64(5): 053301. doi: 10.7498/aps.64.053301
    [14] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [15] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [16] Zhang Liang, Liu Jian-Guo, Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Xu Zhen-Yu, Chen Jun. On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [17] Wang Xiao-Bo, Ma Wei-Guang, Wang Jing-Jing, Xiao Lian-Tuan, Jia Suo-Tang. Single photon wavelength modulation absorption spectrum of acetylene for 1.5 m laser wavelength stabilization. Acta Physica Sinica, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [18] Li Ning, Weng Chun-Sheng. Calibration-free wavelength modulation absorption spectrum of gas. Acta Physica Sinica, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [19] Shao Jie, Gao Xiao-Ming, Yuan Yi-Qian, Yang Yong, Cao Zhen-Song, Pei Shi-Xin, Zhang Wei-Jun. Experimental research on the sensitivity of wavelength modulation by signal processing. Acta Physica Sinica, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [20] Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu Jian-Guo, Dong Feng-Zhong, Gao Shan-Hu, Wang Min, Chen Jun. Absorption measurements of ambient methane with tunable diode laser. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
Metrics
  • Abstract views:  6215
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2016
  • Accepted Date:  22 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map